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Figure 1: AgentDynEx is an LLM-based system for setting up and tracking multi-agent simulations. The user first specifies
mechanics and dynamics across 6 core dimensions, then runs the simulation. As the simulation runs, the system dynamically
reflects on its progress, relying particularly on milestones and failure conditions to judge simulation progress. If the simulation
goes off course, AgentDynEx will gently nudge the simulation back on track.

Abstract
Multi-agent large language model simulations have the potential to
model complex human behaviors and interactions. If the mechanics
are set up properly, unanticipated and valuable social dynamics can
surface. However, it is challenging to consistently enforce simula-
tion mechanics while still allowing for rich and emergent dynamics.
We present AgentDynEx, an AI system that helps set up and track
simulations. Specifically, AgentDynEx introduces milestones that
act as checkpoints and failure conditions that act as guardrails
to ensure dynamics are rich and mechanics are respected as the
simulation progresses. It also introduces a method called nudging,
where the system dynamically reflects on simulation progress and
gently intervenes if it begins to deviate from intended outcomes.
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A technical evaluation found that nudging enables simulations to
have more complex mechanics and maintain dynamics compared
to simulations without nudging. A case study with AgentDynEx
documented instances where real users were able to accurately
simulate lived experiences and learn new, insightful dynamics. We
discuss the importance of nudging as a technique for balancing
mechanics and dynamics of simulations.
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1 Introduction
Computer-based simulations help us understand and predict how
complex systems behave. Physicists use them to model the physical
world, and engineers use them to predict how real machines will
respond before they are built or deployed. However, simulating
human behavior is different - and much harder. People don’t just
follow rules, they interpret them, test boundaries, react emotion-
ally, lie, and manipulate. Moreover, in group settings, humans can
exhibit emergent collective dynamics, including unexpected collab-
oration, collusion, cheating, rioting, or social bonding. Prior work
has shown that multi-agent large language model (LLMs) simula-
tions demonstrate human-like agency. In these simulations, agents
can take unexpected actions, bend rules, and operate outside of
standard constraints [19, 23, 24, 28]. Being able to create a simula-
tion of the real world to simulate different human behaviors could
be a valuable thinking tool for people who want to explore the
unexpected human reactions to new rules or other interventions in
a real world environment.

When modeling biological, social, or technical systems, two di-
mensions govern the outcome: mechanics and dynamics.Mechanics
are the rules, roles, and structures that define the environment and
its players. For example, in chess, the mechanics include the board
setup, the two players, the winning conditions, and the movement
rules for each piece. Dynamics are the behaviors and actions that
emerge from the initial state. In chess, the rules never change, but
what makes the game compelling are the players’ movements, re-
sponses to each other, and rich varieties of strategies through game
play (dynamics). In a larger social environment, like a classroom,
there are certain rules and expectations set in place (mechanics).
These rules might include assignment deadlines, participation poli-
cies, etc. Students can respond to these rules in many ways: they
may follow or unexpectedly violate them, like by submitting as-
signments late, skipping class, emailing the teacher for extensions,
or even cheating (dynamics). To set up a useful simulation, it is
necessary to capture the mechanics that define the specific class-
room environment from which you want to see dynamics emerge.
In many human scenarios, even simple rules can lead to complex
social dynamics that are hard to anticipate.

However, setting up a social simulation that reflects reality is
difficult for two key reasons. Firstly, when creating a simulation of
social scenarios, it is challenging to enforce simulation mechanics
while still allowing for rich and emergent dynamics. Too many
mechanics can over restrict agent behavior, preventing interesting
dynamics from emerging. For example, if classroom rules force
students to submit assignments on time, then agents never have
the option to act naturally and engage in deviant behavior like
collaboration or cheating. Too few mechanics creates the opposite
problem: agents might wander in circular conversations or go com-
pletely off script, like by taking a “vacation” instead of working
towards classroom assignments. These behaviors would go against
the configuration of the simulation world and undermine results.
Simulations require just enough enforcement of the mechanics
so that agent behavior is neither random nor so constrained that
agents lose their autonomy. The right level of enforcement for me-
chanics will enable realistic, meaningful, and relevant dynamics to
emerge.

Secondly, small differences in how a simulation is set up can
have larger differences on the outcomes seen. Capturing the im-
portant differences that make one environment special is crucial
to configuring an accurate and useful simulation. For example, if
you are a teacher who wants to run a simulation of your classroom,
then configuring and simulating a generic classroom will likely not
capture the human behaviors and dynamics that are unique to your
classroom. You need to specify enough details of the room in your
classroom - the teacher’s approach, the students personalities, and
the environment - such that the configured environment accurately
reflects your classroom. Additionally, even if you anticipate a par-
ticular outcome (e.g. like students turning in assignments late when
they are stressed), you cannot simply instruct the agents to turn
in assignments late when they are stressed. Doing so undermines
the purpose of the simulation. Instead, you must identify the un-
derlying conditions and constraints that would naturally produce
the behavior you have observed.

To address these challenges, we introduce AgentDynEx, an LLM
interface for configuring, monitoring, and steering multi-agent sim-
ulations in a way that enforces mechanics while allowing dynamics
to emerge naturally. The user first inputs a scenario that they want
to simulate, like a classroom late policy for homework assignments,
since the user wants to understand how students might respond to
a new homework late policy. AgentDynEx guides the user through
the simulation setup by having the user specify the mechanics –
agents, locations, stop conditions, expected milestones, and failure
conditions – of the simulation (Figure 1). While the simulation is
running, AgentDynEx provides summary logs of the simulation’s
progress for a user to easily monitor. AgentDynEx dynamically
reflects on these logs, comparing them to the configuration, and
suggests clear actions that specific agents should take to ensure
the simulation is progressing towards the defined milestones and
not hitting the failure conditions. We call these small interventions
that AgentDynEx suggests nudges.

We use nudging as a way for users to steer a simulation towards
milestones while preserving agent autonomy and simulation me-
chanics. Nudges are deliberately minimal; they are not meant to
change the simulation’s trajectory, but gently redirect it when it
stalls or drifts from the expected checkpoints. In the classroom
scenario, agents might get stuck in a circular conversation. Agent-
DynEx can nudge the professor to announce that the assignment
deadline has arrived, so that the student agents break their circular
conversation and the simulation can move to the next milestone.
Nudges can also reinforce or correct simulation mechanics. For
example, if the agents try to submit their homework through a
nonexistent online portal, AgentDynEx can nudge the professor to
remind the students to verbally declare their submissions instead
(nudge 2 in Figure 1). AgentDynEx supports two modes for nudg-
ing: 1) automatic nudging, where an LLM continuously reflects
on simulation progress and intervenes when it deems necessary
2) manual nudging, where the human operator judges when the
simulation is stalling or veering from the expected milestones and
can step in to nudge agents to move to certain locations or say
specific things.

Overall, our contributions consist of:



AgentDynEx: Nudging the Mechanics and Dynamics of Multi-Agent Simulations SUBMITTED FOR REVIEW, Feb 2026, New York, NY

• A formative study that specifies the challenges of balanc-
ing simulation mechanics with dynamics: no matter how
detailed the configuration might be, multi-agent simulations
risk deviating from expected checkpoints because of agents’
autonomous behaviors.

• AgentDynEx, an LLM interface for configuring, monitor-
ing, and steeringmulti-agent simulations towardsmilestones
while allowing emerging dynamics to surface from autonomous
agent behavior. AgentDynEx reflects on agent actions in the
simulation, detects when milestone progress is stalled, and
nudges agents towards the expected simulation checkpoints.

• Nudging, a method to gently guide simulation dynamics by
reflecting on the running simulation against defined mile-
stones and failure conditions, then make the most minimum
possible movement to get it back on track.

• A case study that documents instances where real users
successfully configured and simulated real, lived experiences.
Every participant reported observing at least one instance
of interesting dynamics after reflecting on a simulation.

• A technical evaluation of 42 simulations showing that
nudging successfully guides simulations towards expected
checkpoints. Simulations with nudging complete more mile-
stones than simulations without nudging.

2 Related Works
2.1 Balancing Mechanics and Dynamics
Designing systems that model human behavior – whether games,
social simulations, or policy tools – require balancingmechanics (ex-
plicit rules governing interactions) and dynamics (emergent behav-
iors). In recent years, research in diverse fields such as psychology,
social sciences, political science, and economics have demonstrated
that a combination of both elements are essential – neither can
individually define an outcome in isolation [7, 11, 14, 18, 27].

The mechanics-dynamics-aesthetics (MDA) framework formal-
izes how rules constrain emergence [17]. For example, chess’s move-
ment mechanics (e.g., bishops moving diagonally) enable strategic
dynamics (e.g., controlling the center), which produce aesthetic
outcomes (e.g., tension or mastery). Classic game theory models
demonstrate how simple rules can give rise to complex, often sur-
prising outcomes. For example, in the prisoner’s dilemma, binary
confession rules (mechanics) lead to cooperation or betrayal (dy-
namics) [4]. Similarly, in the Public Goods Game, contribution rules
(mechanics) can lead to collective action or free-riding (dynamics)
which can be influenced by introducing punishment mechanisms
[9, 22]. These examples highlight the unpredictability of human
behavior even under strict mechanical constraints.

Nudging, originally from behavior economics, refers to the light-
touch interventions that steer individuals towards desirable be-
haviors while preserving their freedom of choice [32]. In real life,
people do not always follow the rules and mechanics meant to
govern them. In a classroom environment, if homework is due
on Friday, not all students will submit it on time. Sometimes, the
professor must remind – or nudge – the students to turn in their as-
signments. Similarly, security guards prevent people from entering
restricted areas. Rather than imposing strict constraints, nudges
subtly alter the structure of decision-making contexts to promote

beneficial outcomes while preserving individual autonomy [13, 31].
Agents are similarly autonomous and unpredictable. Instead of
directly controlling agents, AgentDynEx introduces light-touch
interventions—such as adjusting an agent’s location or prompting
new conversations—to influence emergent dynamics and keep them
coherent with the underlying mechanics. These interventions main-
tain agent autonomy while guiding the system toward intended
outcomes, enabling researchers to steer simulations in a princi-
pled and controlled manner without disrupting the emergence of
behavior.

2.2 LLM Multi-Agent Simulations
Recent work shows that LLMs can simulate a wide variety of so-
cial, strategic, and cognitive behaviors. LLM simulations are able
to replicate a variety of lab experiments [2, 6, 15, 29] as well as
open-ended real-world situations [16, 19, 23, 24, 26, 28]. Addition-
ally, multi-agent LLM systems outperform single LLMs in simulat-
ing human dynamics [29]. The introduction of generative agents
[23, 24] demonstrate how rich, emergent behavior can arise when
agents are endowed with memory, planning, and social reasoning.
Following research has used similar architectures to model cooper-
ative behaviors [28], strategic behaviors [12, 29], trust behaviors
[36], and collaborative or competitive dynamics [19] – suggesting
that LLM agents can display realistic and complex social behaviors
under the right setup conditions.

Despite promising results, the stochastic nature of LLM simula-
tions are difficult to construct, debug, and extend. The mechanics
– how agents take turns, update their memory, or interact with
one another – are often “hardcoded,” difficult to reproduce, and
not transferrable to novel situations. The dynamics – interesting
behaviors that agents demonstrate in simulations – can be sensitive
to the specific prompts used [10]. Trying to debug current agent
simulations highlights the brittleness and opacity of current multi-
agent setups [8]. As systems scale in complexity of simulations and
number of agents [25], the lack of modular, reusable setups becomes
a major barrier to construction and extension. AgentDynEx allevi-
ates these challenges by guiding users through the setup process
via a structured setup framework.

2.3 Design Dimensions for Design Specification
Constructing multi-agent simulations is fundamentally a design
problem. It is complicated and there are many factors to consider,
like the agents, locations, actions, stop conditions, behaviors, etc.
that are necessary in the simulation. One approach to guide users
through the set up process is a dimensions-based approach to design
thinking. Design dimensions decompose problems into orthogonal
axes that a user can individually ideate, then bring together for their
final design [21, 33]. Research has shown that LLMs show promise
in dimensional design for generative art [3], narratives [30], and
UI-code generation [20]. In particular, prior systems have shown
the value of a Design Matrix to explore dimensions over LLM-
generated dimensions to fully specify the design space [20]. In the
Matrix, each column represents a dimension of the design space, and
each row explores the dimension on a different level of specificity.
Designing multi-agent simulations is a complex task that requires
significant setup. To make this process more understandable, we
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use this matrix framework to help ensure that the simulation’s
design space is thoroughly specified and that proper guardrails are
in place before the simulation is run.

3 Formative Study
In our formative study, we probed an existing state-of-the-art sim-
ulation tool, GPTeam, to evaluate the quality of the simulations
produced. We chose four simulation scenarios and examined how
far each could progress, whether it generated meaningful behaviors,
and what common pitfalls emerged.

GPTeam (See Figure 2) is an open-source multi-agent system for
simulating emergent social behavior[1]. GPTeam is implemented
in Python and uses GPT-4 to run the simulations. Out of all open-
sourced systems we found, GPTeam was the most functional in
creating simulations with reasonably complex mechanics and dy-
namics. The input to the system is a JSON (config) file describing
the locations of the simulation world, agents and their personali-
ties, the agents’ likely actions and directives, and the stop condition
indicating the simulation is successful. A simplified sample configu-
ration file of a Classroom Assignments scenario can be seen in Figure
3. The outputs are rich logs detailing each agent’s observations,
thoughts, actions, reactions, and plans. Refer Appendix A for more
background on GPTeam.

3.1 Formative Methodology
We evaluated four different scenarios that required non-trivial me-
chanics; (details in Table 1). We tested whether the simulation could
complete structured scenarios while exhibiting rich dynamics. The
configuration files were created by multi-agent simulation experts
with prior publications in the domain.We verified that each configu-
ration was capable of producing a successful run at least once. Each
configuration was executed 7 times for a total of 28 simulations,
and ran for 25 minutes before being terminated. Each simulation
had 3-7 agents depending on the scenario. Since simulations trigger
an LLM call for every movement (e.g., planning, observing, acting)
for each agent, the cost increases exponentially with the number of
agents. We found that 25 minutes and 3-7 agents struck a reasonable
balance between complexity, runtime, and cost.

A simulation completed if it hit the stop condition within 25
minutes without logical flaws or impossible actions. For example,
in the Classroom Assignments scenario, success meant all students
correctly submitted three assignments. If a student handed in home-
work to the professor located in another room, a physically impos-
sible action, the run was counted as a failure. We also measured
how many simulations exhibited what we call notable dynamics —
behaviors that are not dictated by the configuration but are consis-
tent with human interaction and the environment. For example, in
the classroom scenario, it is not a notable dynamic when an agent
turns in a homework assignment, because the configuration dic-
tates agents must submit assignments. However, there is a notable
dynamic when an agent turns an assignment in late or tries to cheat.
We recorded the number of simulations that exhibited at least one
notable dynamic, even if the simulation ultimately failed.

3.2 Formative Results
Only 6/28 simulations completed successfully (Table 2). Reasons
for failure are documented in column 3. Simulations either failed
because the stop condition was not reached in 25 minutes, agents
got stuck in wait loops, tried to take impossible actions, or went
off topic. As shown in Table 2, column 2, most scenarios completed
only 1 or 2 out of 7 total runs. Oftentimes, agents did not announce
a key piece of information (the professor did not assign homework
for Classroom Assignments, or the manager did not declare the
promotion for Technology Company Promotion, students never com-
mitted to prom dates for Prom), causing infinite wait loops before
being terminated. Other times, agents would take impossible or
logically inconsistent actions, such as trying to submit assignments
through nonexistent homework portals (Classroom Assignments)
or attempting to talk to another agent that was not in the same
room as them (Prom), causing the simulation to crash. Other times,
agents got distracted and never regained focus; in Surprise Party,
where friends were planning a surprise party, agents began looking
at clouds in the sky and never went back to planning. The full list
of failure reasons can be seen in Table 2 in column 3.

Despite the high rate of failures, simulations still had notable
dynamics – 16/28 simulations exhibited at least one notable dy-
namic (Table 2, column 4), despite mechanical failures that may
have occured during the run. Across all four scenarios, 3 to 5 out of
7 runs contained at least one notable dynamic (Table 2, column 5),
supporting the idea that multi-agent LLMs are valuable tools for
thought to reveal unanticipated social behaviors. In the Prom sce-
nario, students tried to wingman eachother to secure prom dates. In
the Technology Company Promotion scenario, one employee secretly
competed against teammates while outwardly encouraging them,
demonstrating social dynamics like rivalry and deception. These
were all behaviors not explicitly encoded in the configuration and
thus rich and notable (Table 2, column 5). However, the dynamics
were constrained by the mechanics. Only 4/28 runs completed and
had notable dynamics. As seen in Table 2, column 6, simulations
that both completed successfully and had interesting dynamics
were few – only 0 to 2 out of 7. When the underlying rules break
down – such as a manager never announcing a promotion or a
professor never setting assignment deadlines – the simulation can-
not play out to completion, limiting the validity of its results. In
short, respecting the mechanics is essential for notable dynamics
to emerge.

3.3 Themes
We analyzed the GPTeam output logs from the failures to under-
stand how andwhy simulations go off track and iteratively clustered
recurring patterns of the failures until they identified key themes de-
scribed below. Tentative themes were discussed within the research
team and iterated upon to arrive at the final set of themes.

3.3.1 Challenge 1: Users cannot easily interpret the simulation.
While simulations were running, it was clear that things were
happening but it was unclear if progress was being made. When
running a simulation, every thought, action, observation, or inter-
action, whether relevant or trivial, was recorded, causing logs to
expand exponentially. The logs were not threaded in a particular
way to show who did what when; there was no way to get a high
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Figure 2: GPTeam UI shows the logs of each agent behaviors, and the location each agent is in.

Classroom Assignments Technology Company Promotion Prom Planning Surprise Party

Agents: 1 professor; 3 students
of varying personalities

Actions: Professor assigns
3 assignments; students complete
and submit

Locations: 1 classroom for all
agents; 1 library for students to
do homework

Stop Condition: All students
submit 3 assignments

Agents: 1 manager; 4
software engineers

Actions: Manager announces
promotion opportunity, assigns
tasks; employees complete tasks

Locations: 1 office space for
everyone; 1 cafeteria for
software engineers

Stop Condition: One person
promoted after three completed
tasks

Agents: 7 students looking for
dates

Actions: Students search for and
confirm prom dates

Locations: School hallway,
school courtyard

Stop Condition: 6 students
paired, 1 remains single

Agents: 4 friends

Actions: 3 plan a surprise party
while distracting the target
friend

Locations: 1 home, 1 park,
1 coffee shop

Stop Condition: Party
successfully occurs

Table 1: Summary of simulation scenarios showing agents, actions, locations, and stop conditions – core parameters that must
be filled out for the GPTeam configuration.

level view of the run. Many logs were filled with small talk or shal-
low exchanges. This ambiguity made it hard to evaluate whether a
simulation was broken, slightly off-track, or proceeding as normal.

3.3.2 Challenge 2: Users can’t tell when a simulation is failing.
When agents began to stall or exhibit nonsensical behaviors, users
had no way of detecting what was going wrong early on. They had
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{
"world_name": "Classroom Scenario",
"locations": [

{
"name": "Classroom",
"description": "A single room where Professor Knight teaches and students work."

},
{
"name": "Cafe",
"description": "A casual spot where only students can hang out or work on assignments together."

}
],
"agents": [

{
"first_name": "Professor Knight",
"public_bio": "Professor who assigns five assignments and enforces a late policy (10% off per day late).",
"directives": [
"Announce late policy and assignments.",
"Answer student questions.",
"Assign three assignments across the semester.",
"Stay only in the Classroom."

]
},
{
"first_name": "Celia",
"public_bio": "Determined student who pushes herself to succeed at any cost.",
"directives": [
"Work on assignments.",
"Inform professor if submitting late.",
"Can move between Classroom and Cafe."

]
},
{
"first_name": "Sulley",
"public_bio": "A careful student who sometimes overthinks and procrastinates.",
"directives": [
"Work on assignments.",
"Inform professor of late submissions.",
"Can move between Classroom and Cafe."

]
},
{
"first_name": "Mike",
"public_bio": "Values balance and well-being, won't overwork to meet deadlines.",
"directives": [
"Work on assignments.",
"Communicate about late submissions.",
"Can move between Classroom and Cafe."

]
}

]
}

Figure 3: GPTeam Sample JSON Configuration of a Classroom Assignment scenario with all the fields needed in the GPTeam
configuration. Note that this configuration is a simplified version and not actually used in the study.

to let the simulation run its course, scrap the results, and waste
resources In Classroom Assignments, students spent the entire simu-
lation asking the Professor about due dates and other unimportant
details, clearly stalling the simulation. Yet, the simulation had no
way to flag this as a failure. In another run ofClassroomAssignments,
students attempted to submit assignments via nonexistent portals
which isn’t supported in the virtual setting.Without progress points
or guardrails, users have no shared understanding of what “moving
forward” looks like, and have no visibility into when the system
has drifted into nonsense.

3.3.3 Challenge 3: Simulations miss opportunities to correct key
failures. Simulations frequently went off track when agents got
distracted and had no mechanism to self-correct. For the Surprise
Party simulation, the agents were successfully planning a surprise

party until they noticed a bird in the park and became so preoccu-
pied with looking at the nature that they forgot about the party.
Ultimately, no matter how well the initial setup of a simulation
is, the agents risk going off course, since they are fundamentally
autonomous and capable of diverging based on subtle shifts in con-
text. Without a way to self-correct, a single failure could derail the
entire run.

3.3.4 Design Goals. Based on the challenges identified in our for-
mative study, we formalized 3 design goals (DG):

• DG1 - Monitor the Simulation: Given the large amount of
simulation logs, there must be an efficient method to monitor
simulation progress (Challenge 1).

• DG2 - Detect Key Progress and Failure Points: There
must be a method to identify when the simulation has gone
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Scenario Runs
Completed Failure Reasons (out of total failed runs)

Runs with
Notable

Dynamics

Notable Dynamics (out of all the runs
with dynamics)

Runs that
both

completed
and had
notable
dynamics

Classroom
Assignments 2/7

• Professor never declares due dates and
students wait forever (2/5)

• Students spend entire simulation asking
about due dates and other irrelevant
questions (1/5)

• Students try impossible actions (e.g.,
nonexistent portal) (2/5)

4/7

• Student cheats on homework (1/4)
• Late submission with excuse (2/4)
• Peer convinces others to procrastinate
(1/4)

1/7

Technology
Company
Promotion

1/7
• Manager never mentions promotion (2/6)
• Tasks completed but promotion never
declared (4/6)

4/7

• An employee secretly competes with team
while pretending to motivate them (2/4)

• An employee tries to helps others to
increase group success to get promoted
(2/4)

0/7

Prom 2/7

• Students commit to prom and keep
“considering” options, causing an infinite
wait loop (2/5)

• Students commit to multiple people because
they forgot they had committed to someone
else (2/5)

• Student asks another student ot prom, but
they are in different locations (1/5)

5/7

• Student tries to plan an elaborate
promposal with friends (1/5)

• Wingman behavior emerges (2/5)
• Students suggest going as a group (2/5)

2/7

Surprise Party 1/7

• Agents plan endlessly, party never happens
(5/6)

• Agents keep getting distracted by irrelevant
details (e.g., birds, clouds) while in the park
(1/6)

3/7

• A planner resists pressure to reveal secret
from the target friend (1/3)

• Target friend gets mad about hidden
plans (2/3)

1/7

Total 6/28 16/28 4/28

Table 2: Formative Study results from simulation runs across 4 scenarios, showing # completed runs, failure reasons, # runs
with notable dynamics, notable dynamics, and the intersection of runs with completed and notable dynamics.

off track by defining progress points and failure modes that
clearly signal when agents are progressing as normal, stuck
in a loop, or behaving inconsistently within their simulation
environment. (Challenge 2).

• DG3 - Fix Failures in Real Time: Once failures are de-
tected, there must be a way to act and apply targeted fixes
to recover the simulation without disrupting emergent be-
havior (Challenge 3).

4 SystemWalkthrough
Based on our design goals, we introduce AgentDynEx, an LLM
interface for configuring, tracking, and steering multi-agent simula-
tions. The input is a scenario that the user wishes to simulate, like
a professor evaluating how students react to a new homework late
policy, to observing interpersonal dynamics within friend groups.
The outputs are the notable dynamics observed during the simula-
tion.

AgentDynEx calls GPTeam to run the simulation. It builds on
GPTeams by structuring the simulation process into three phases:

(1) Pre-simulation. Users define core simulation parameters.
AgentDynEx specifically introduces milestones and failure
conditions to track progress and detect bad behavior, so that
it knows what to look out for in the future (DG2).

(2) In-simulation.

(3) Post-simulation. If there were failure cases, we try to im-
prove the initial setup mechanics by applying reflection to
the prior simulation run. Because AgentDynEx reflects on
both the completed simulation’s mechanics and dynamics,
we call it holistic reflection.

The system was implemented in Python, Typescript, and Flask.
We use Claude 3.7 Sonnet for the Configuration Matrix, creating the
JSON configuration file, and generating intermediate summaries as
the simulation runs. GPTeam is implemented in Python and uses
Gemini-2.5 when running simulations. AgentDynEx is opensourced
on Github 1.

For the remainder of this section, we use a user scenario to walk
through the various features and concepts behind AgentDynEx.
We present the example of a user, Prof. Knight, a sociologist who
is interested in simulating how tension affects friend groups. She
is particularly curious about how these dynamics play out when
students seek prom dates—a common and socially significant event
in American high schools. She starts by prompting “I want to simu-
late a friend group preparing for prom" in the scenario input box,
then clicks “Submit” (Figure 5 - A).
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Figure 4: The Configuration Matrix

4.1 Pre-Simulation Setup via The Configuration
Matrix

Before running a simulation, users need a configuration file that
describes the scenario’s essential simulation parameters. Users first
input a sentence describing a scenario that they want to simulate.
The Configuration Matrix then helps users fill out essential parame-
ters and outputs a GPTeam configuration file. First, users define the
core mechanics: agents, actions, and locations. Next, they establish
dynamic markers: milestones, stop condition, and failure conditions.
These make up the six columns of the matrix. The matrix has 2
rows: the idea row, which presents selectable options for what to
include in the dimension, and the grounding row, which elaborates
on concrete details that make the selected ideas implementable. For
each column, AgentDynEx proposes candidate options in the idea
cell.

The user checks off ormodifies options as needed. The grounding
cell then fleshes the ideas out and provides a full text description of
the locations (Location:Grounding). Prior research shows that the
matrix interface’s simple organization provides a highly usable way
to let AI suggest ideas that people can edit before accepting and
expanding to concrete solutions [20]. Once all twelve cells are filled,
the system compiles the matrix contents into the configuration file
used to run the simulation.

4.1.1 Defining Core Mechanics: Agents, Actions, Locations. Users
first define the core mechanics of the simulation

Existing simulation frameworks, including GPTeam, require
these parameters to be defined as well. Specifically, in the Agents
column, users define agent personalities and create stakes that in-
fluence agent behaviors. The Actions column specifies what tasks
agents need to complete and how and when these tasks will be
performed. The Locations column identifies rooms within the sim-
ulation where agents can interact. Location setup is essential for
emergent dynamics. For example, in the classroom scenario, having
2 rooms (1 classroom and 1 student cafe) versus having 1 room (1

1Will be added after publication

classroom) can greatly impact the simulation, because if the stu-
dents do not have a room where the professor can’t enter, they may
never suggest cheating [29].

In the prom scenario, Knight first fills out the Agents column.
A list of 8 potential agents that describe high school archetypes
appears in the Agents:Idea cell (Figure 5 - B). Knight wants an odd
student count to increase pairing pressure and overlapping inter-
ests. She unchecks a specific agent to avoid introducing conflict that
would pull behavior away from prom-pairing dynamics (Figure 5 -
C). She clicks submit and grounds the ideas in Agents:Grounding. A
list of bullet points that expands on the personalities of each agents
appears in the cell (Figure 5 - E). Knight likes how the ground-
ings create richer and more complete character portraits by adding
stakes, motivations, and even overlapping crushes. She accepts
them; these personality details will be written into the configura-
tion file. Knight repeats these actions (picking ideas, fleshing out
grounding) to fill out the columns for Actions and Locations. For the
Actions column, AgentDynEx suggests and Knight approves that
agents must ask eachother to prom, accept/reject promposals, and
announce to all agents when paired. This realistic to her. For the
Locations, Knight chooses to have a school hallway and courtyard.
A hallway offers a public environment where students can interact
while the courtyard can serve as a semi-private zone suitable for
pulling someone aside to ask them to prom.

4.1.2 Establish Dynamic Markers: Milestones, Stop Condition, Fail-
ure Conditions. Simulation frameworks like GPTeam already re-
quire users to define the stop condition to indicate when a simula-
tion has successfully completed or reached its intended conclusion.
AgentDynEx introducesmilestones and failure conditions to provide
intermediate checkpoints and safeguards to keep the simulation on
course, ensuring steady progress toward the stop condition (DG2).
Specifically, milestones define the chronological progress points
within the simulation; they are anchor points that break scenarios
up into distinct phases. During the simulation, it uses the mile-
stones to detect if the dynamics are going off track. Without it, the
simulation can stall or drift into randomness and lose its connection
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Figure 5: The Configuration Matrix UI: A - Users type in a scenario they want to simulate. B - Users brainstorm idea suggestions
for each dimension. C - Users choose which ideas to ground. D - Users can iterate on suggestions and add their own options. E -
Users submit their ideas to ground. Users go through the same process for the grounding cells (B - Brainstorm suggestions, D -
iterate suggestions). F - Users can save different grounding versions. They must fill out the entire matrix, then they can G -
name and explore the scenario to generate a configuration.

to real-world behavior. Failure Conditions anticipate potential issues
that can arise during the simulation. They act as guardrails that
protect the simulation from derailing.

Knight establishes the dynamic markers for her prom scenario.
The milestones are that the first, second, third prom invitations are
finalized. These all make sense to her—although each simulation
may feature different pairings and prom-asking strategies, these
milestones serve as universal social beats across a prom scenario.
Each milestone corresponds to a real, observable change in the
agents’ relationships, rather than being tied to time steps or su-
perficial events. For the Stop Condition, Knight chooses to end the
simulation as soon as six of the students have paired up with each
other. This gives Robin confidence that the simulation will not just
stop arbitrarily and instead end with definitive prom pairings. The
Failure Conditions include details such as "Infinite loop: students
continue to change their prom decisions."

Knight has now completed the Matrix (the full outputs can be
found in Appendix I). She clicks “Generate Config” (Figure 5 - G),
which takes the contents of the matrix and generates a GPTeam
configuration file. Knight clicks “Run Simulation”, and instance of
GPTeam starts.

4.1.3 Implementation. To execute each cell in the Matrix, we pro-
vide few-shot examples to guide the type of response desired (Ap-
pendix B). This is consistent with prior work on matrices. [20]. Each
cell (ie: Agents:Idea, Milestones:Grounding) makes a single LLM call
for the output, which the user approves. As with other matrix imple-
mentations, the Configuration Matrix uses all previously-submitted

cells to make suggestions for the current cell [20]. This ensures
that the current design is always factored in when generating new
suggestions for each entry, and that all existing cells are synthe-
sized to form a coherent simulation design. Returning back to the
classroom example, if the Agents column is "1 professor agent and
3 student", and the Actions column is "professor declares assign-
ments; student declare homework submission after completion",
then the Milestones column would build on that logic: "1) Professor
declares late policy and assignments, 2) Assignment 1 is due, 3)
Assignment 2 is due, etc.". We use annotated few-shot examples for
our LLM call that converts converts the contents of the Matrix into
a configuration JSON file for GPTeam (Appendix C).

4.2 In-Simulation Monitoring and Nudging
As the simulation runs, AgentDynEx dynamically reflects on the
simulation and generates intermediate summaries to track its progress
(DG1). If the simulation deviates from themilestones or hits a failure
condition, AgentDynEx nudges it back on track without changing
the dynamics’ fundamental trajectory (DG3) (Figure 6).

4.2.1 Tracking the Simulation. Every 30 seconds, AgentDynEx uses
the most recent GPTeam logs to generate status updates. Agent-
DynEx will return a green icon if the simulation is progressing as
expected, a yellow icon if the simulation is stalled and further mon-
itoring is required, and a red icon if the simulation has run into an
error defined in the Failure Conditions column of the Configuration
Matrix.
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Figure 6: Nudging: The system generates intermediate summaries during simulation runtime. It also dynamically reflects on
the progress of the simulation to automatically nudge the simulation. The user can also manually nudge the simulation.

Every 60 seconds, AgentDynEx will parse through the most re-
cent GPTeam logs to generate two types of intermediate summaries:
change summaries and dynamic summaries. Change summaries
illustrate important changes within the simulation. Each change
summary will indicate which milestone the simulation is in, where
each agent is, what each agent is doing, and if any changes have
occurred from the previous summary. Dynamic summaries enable
users to track notable dynamics. Each dynamic summary illustrates
the interesting and unexpected behaviors that emerge as the simu-
lation progresses. It also indicates the milestone the simulation is
in.

4.2.2 Nudging with Dynamic Reflection. AgentDynEx introduces
a method called nudging to gently intervene in a simulation if
the simulation is deviating from the range of expected dynamics
defined by the milestones and failure conditions, or violating core
mechanics (Figure 6). There are 2 techniques we use as micro-
interventions for nudging: 1) relocating an agent, and 2) forcing an
agent to speak. Both of these techniques are minimal enough where
they can coax the simulation back on track without intervening in
ways that fundamentally alter the simulation’s trajectory.

AgentDynEx supports automatic nudging, where the system
dynamically reflects on the running simulation and nudges the
simulation if it falls off course. It reflects on the simulation progress
using GPTeam logs, the intermediate summaries, and themilestones
and failure conditions. Each suggested nudge identifies the problem
and a solution that consists of a series of micro-interventions.

AgentDynEx also allows users to manually nudge a simulation
based on their interpretation of the intermediate summaries, and
knowledge of the milestones and failure conditions. Manual nudg-
ing is especially useful in cases where human insight is necessary
to interpret subtle dynamics or when experimenting with alter-
nate dynamic paths, and ensures the system remains flexible and
interactive.

4.2.3 Implementation. The LLM prompts AgentDynEx to parse
through GPTeam logs and generate status updates, change sum-
maries, and dynamic summaries (Appendix D). The LLM prompt
and few-shot examples used to dynamically reflect on simulation

logs to nudge the simulation (Appendix E). To nudge the simula-
tion, we call a Python script that writes into the GPTeam agents’
memories database mid-simulation.

4.3 Post-Simulation Holistic Reflection
AgentDynEx applies reflection on a completed run to refine the
simulation mechanics for a future run. We call this process holistic
reflection, because AgentDynEx looks at the the mechanics (original
setup) and dynamics (output logs) as a whole. The input to holistic
reflection is the simulation run’s logs and configuration file. The
output is an updated configuration that addresses the issues of the
run.

To support effective reflection, AgentDynEx maintains two lists:
a static and a dynamic debugging . The static debugging list acts as
a global source of common problems and solutions across all simu-
lations. These include issues like agents getting stuck in irrelevant
conversations and agents trying to ask the humans moderating the
simulation for input.

The dynamic debugging list contains problem-solution pair fixes
to tackle errors that the user specifies after a simulation run. For
example, some errors specific to theClassroomAssignments scenario
are “agents are trying to submit assignments through a nonexistant
online portal.” As users iterate through their simulation scenario,
they can adds more errors to the dynamic debugging list and make
failures easier to spot and quicker to fix next time.

AgentDynEx uses the debugging lists and GPTeam logs from the
runs as context to create an updated configuration. It proposes a
list of problems and solutions. The fixes are limited to improving
the mechanics and dynamics of the simulation. Core parameters
of the scenario like number of locations or the milestones remain
unchanged. A new run will then be created on the interface.

4.3.1 Implementation. The reflection step is done via a single LLM
prompt, which can be found in Appendix G. The inputs are the
prior simulations summary tables, most recent logs, and the static
and dynamic debugging list. The output is a list of problem-solution
entries relevant to the simulation. The prompt that takes the de-
bugging lists and old configuration and converts it to an updated
configuration file can be found in Appendix H. All runs are orga-
nized and stored in a tree-structured JSON format in the backend
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Figure 7: Intermediate Summaries Interface: AgentDynEx presents the configuration file, logs, and a summary of events as
simulation progresses so the user can understand what is happening in simulations. A - Agents can toggle between different
simulation runs. B - They can view the status of the simulation. C, D - As the simulation progresses, change logs and dynamic
logs are added to the table. E - Users can see the original configuration file. F - Users can see the original GPTeam logs. G -
System generates summary after simulation terminates. H - Users can verify summary logs by referencing relevant direct
quotes from logs. I - Users can search specific insights from a chatbot that has latest log history. J - AgentDynEx dynamically
reflects on simulation’s progress to generate automatic nudges as problem-solution entries. K - Automatic nudges are deployed
by the system while the simulation runs.
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Figure 8: Manual Nudging Interface: The user can see where each agent is (C) and manually nudge the agent to a new location
or to speak something (D).

Figure 9: Holistic Reflection Interface: AgentDynEx supports dynamic repair by identifying simulation breakdowns and
recommending targeted fixes (A). Users can review system-detected or user-specified errors (B), apply corrective modifications
(C, D), and automatically generate an updated simulation configuration to improve future runs (E), then create a new run (F).

to support iteration. By storing the configurations and results of all
the runs in one place, the user can easily revisit, compare, and build
upon previous runs, creating a simplified form of version control.

5 Evaluation
In our formative study, we found that agents must respect underly-
ing mechanics for the dynamics to be useful. Thus, our technical
evaluation measures the effectiveness of nudging as a method for
enforcing mechanics and guardrailing dynamics. We focused on
the following research questions:

• RQ1: Automatic Nudging - To what extent does automatic
nudging contribute to simulation success?

• RQ2: Manual Nudging - To what extent does manual nudg-
ing contribute to simulation success?

• RQ3: Nudging Combined with Holistic Reflection - To
what extent does nudging combined with holistic reflection
contribute to simulation success?

5.1 Methodology
5.1.1 Data. Our evaluation was conducted through a quantitative
study of 7 simulation scenarios that range from social dynamics to
logical complexity. Scenarios varied from highly structured, multi-
round formats, like debate tournaments, to more fluid situations,
like friends planning a trip. We selected a variety of social dimen-
sions (Table 3).

We created 6 variations of each scenario for a total of 42 simula-
tions (Table ??): To create the configuration files for the Baseline
condition (Base), we simply completed the Configuration Matrix
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# Scenario

1 Debate Competition
2 Sports Team Practice Schedule
3 Friends Planning a trip
4 School Election Campaign
5 Roommates and Chores
6 School Group Projects
7 Partner Assignments

Table 3: Simulation Scenarios

and generated a configuration file in AgentDynEx. The Automat-
icNudging (Auto) and ManualNudging (Man) conditions used the
same configuration as the Base condition. To create the configura-
tion file for the Baseline+Reflection (Base+R) condition, we ran Base
once for 25 minutes and used AgentDynEx to holistically reflect on
the results and generate a new configuration. We used the same
updated configuration for AutomaticNudging+Reflection (Auto+R)
and ManualNudging+Reflection (Man+R) to ensure all variations
with holistic reflection were consistent.

5.1.2 Hypothesis. We hypothesized:
• H1 - Automatic Nudging Improves Mechanics: Simu-
lations with automatic nudging will have higher mechanic
scores than simulations without nudging. To test this we
compare Auto against Base and Auto+R against Base+R.

• H2 -Manual Nudging ImprovesMechanics: Simulations
with manual nudging will have higher mechanic scores than
simulations with automatic nudging. To test this we compare
Man against Auto and Base, and Man+R against Auto+R and
Base+R.

• H3 - Holistic Reflection Improves Mechanics: Simu-
lations with holistic reflection will have higher mechanic
scores than simulations without holistic reflection. To test
this we compare Auto+R against Auto and Man+R against
Man.

5.1.3 Procedure. Because simulations can produce non-deterministic
outputs and occasionally crash, we executed each simulation 3
times and selected the best run. Each simulation ran for 20–25 min-
utes before being manually terminated. Each simulation had 3-7
agents depending on the scenario. Similar to the formative study,
we found that 25 minutes and a 3-7 agents struck a reasonable bal-
ance between complexity, runtime, and cost. In the simulations with
automatic nudging (Auto, Auto+R), every recommended nudge was
applied to the simulation. In the simulations with manual nudging
(Man, Man+R), a human operator monitored milestone progression
and judged whether and what to nudge.

We evaluated our simulations based on their mechanics and dy-
namics. To measure mechanics, we looked at how many milestones
a simulation successfully completed.

Milestones are concrete, observable, and binary, which reduces
ambiguity. If a simulation progressed through all the milestones and
hit the stop condition (ie: for the Classroom Assignments scenario,
the professor declared each assignment and their due dates, and

students submitted assignments three times), it effectively followed
the setup mechanics. A human defined 5 milestones per scenario
for consistency. The mechanics were rated on a scale of 0-5; if it hit
no milestones, it got a score of 0/5; if it hit one milestone, it got a
score of 1/5; if it hit all five milestones and completed, it got a score
of 5/5.

Dynamics are a measure of how many interesting events and
behaviors occurred. Similar to the formative study, we looked for
notable dynamics: events and behaviors not dictated by the configu-
ration but consistent with human interaction and the environment.
We graded the dynamics of the situation based on how many com-
pleted milestones contained at least one notable dynamic. Within
each milestone, we made a binary decision: did a notable dynamic
occur or not? For example, if a simulation completed three mile-
stones and each milestone contained at least one notable dynamic,
the score was 3/3; if the simulation completed two milestones and
only one milestone had a notable dynamic, the score was 1/2. Some-
times, one notable dynamic may trigger another one (ie: a breakup
could trigger interesting responses from all the agents). For sim-
plicity, we counted only whether or not a milestone had a notable
dynamic, not how many it had, because multiple notable dynamics
within a milestone could be correlated. Three authors manually
reviewed each simulation and annotated for notable agent behavior
within each milestone.

5.2 Results
In the mechanics dimension, simulations with nudging outper-
formed simulationswithout nudging. Results for all scenarios across
the six conditions can be seen in Table 5. In the dynamics dimension,
simulations with nudging had better dynamics than simulations
that did not have nudging. Results can be seen in Table 6. This
supports our overall hypothesis that nudging improves simulations
in both mechanics and dynamics.

We ran an ANOVA test for mechanic scores and found that there
were significant differences at the p<0.01 level (p=3.41e-10). We also
ran an Fisher’s Exact test for dynamic scores and found that there
were no significant differences between the dynamics. This was
expected—there may be small fluctuations in dynamics based on
the mechanics of the simulations, but for the most part, simulations
are rich in dynamics when they have proper setups. Therefore, in
the remainder of this section, we analyze the mechanic scores.

5.2.1 H1 - Automatic Nudging Improves Mechanics. To test if auto-
matic nudging improves mechanics, we compared simulations with
automatic nudging against the baseline conditions (Auto against
Base and Auto+R against Base+R). A Tukey’s HSD test showed
that Auto (average score 2.43) significantly outperformed Base (av-
erage score 0.71) at the p<0.01 level (p=0.0001). A Tukey’s HSD
test showed that Auto+R (average score 2.71), significantly outper-
formed Base+R (average score 1.14) at the p<0.05 level (p=0.012).
Results are presented in Figure 10. This shows full support for
H1, that automatic nudging has higher mechanic scores for
simulations.

For instance, in the Partner Assignments scenario where student
agents were tasked to form pairs for assignments, a recurring issue
emerged where agents kept forgetting previous commitments and
repeatedly agreed to partner with others. With dynamic reflection,
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Table 5: Mechanics Scores. Highest average scores emphasized - Man+R has the highest average score for mechanics and
significant at the p<0.01 level.

Scenario Base Auto Man Base + R Auto + R Man + Ref

Debate Competition 0 3 3 1 4 5
Sports Practice Schedule 1 3 1 2 3 4
Friends Planning a Trip 0 2 3 0 2 5
School Election Campaign 1 3 2 2 3 5
Roommates and Chores 1 3 4 1 3 5
School Group Project 1 1 3 1 1 5
Partner Assignments 1 2 5 1 3 5

Average 0.71 2.43 3.00 1.14 2.71 4.86***

Table 6: Dynamics Scores. Highest percentage emphasized - Auto+R has the highest percent notable dynamics per milestone,
but the scores are not significant.

Scenario Base Auto Man Base + R Auto + R Man + Ref

Debate Competition 0/0 1/3 1/3 1/1 3/4 4/5
Sports Practice Schedule 1/1 2/3 1/1 1/2 2/3 3/4
Friends Planning a Trip 0/0 1/2 2/3 0/0 1/2 3/5
School Election Campaign 1/1 2/3 1/2 2/2 2/3 3/5
Roommates and Chores 0/1 2/3 3/4 0/1 2/3 3/5
School Group Project 0/1 1/1 2/3 0/1 1/1 2/5
Partner Assignments 1/1 2/2 4/5 1/1 2/3 4/5

Total 3/5 11/17 14/21 5/8 13/19 22/34
Avg. % Notable Dynamics per
Milestone

60.00% 64.70% 66.67% 62.50% 68.42% 64.70%

Figure 10: Results summarized for H1. Auto and Auto+R sig-
nificantly outperform both the Base and Base+R conditions.

AgentDynEx was able to nudge the professor to intervene to help
students resolve their pairings. In contrast, the Base condition be-
came stuck in an endless partnering loop and the simulation was
unable to progress.

Figure 11: Results summarized for H2. Man significantly
outperforms Base, but not Auto. Man+R significantly outper-
forms Auto+R and Base+R.

5.2.2 H2 - Manual Nudging Improves Mechanics. To test if man-
ual nudging improves mechanics, we compared simulations with
manaul nudging against simulations with automatic nudging and
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the baseline conditions (Man against Base and Auto,Man+R against
Base+R and Auto+R). Results are presented in Figure 11. A Tukey’s
HSD test showed that Man (average score of 3.00) significantly out-
performed Base (average score of 0.71) at the p<0.01 level (p=0.001).
However, Man did not significantly outperform Auto in mechan-
ics scores (p=0.49). Between Man and Auto, we noticed that when
initial setup is poor, both manual and automatic nudging spend
significant effort in correcting the same issues caused by the flawed
starting state rather than advancing in the milestones. For example,
in the Debate Competition scenario, bothMan and Auto simulations
had to fix the same setup issue: agents were in different starting
locations, which prevented the debate from starting. By the time
the agents were nudged into the same room, 15 minutes had already
passed. There was little time left for the simulation to progress to
more milestones. Poor initial setup limits the benefits of nudging
(especially manual) by forcing both methods to focus on correction
rather than milestone progress.

When the initial setup improved via holistic reflection, simu-
lations could start “on track” and immediately progress through
the milestones. A Tukey’s HSD test showed that Man+R (average
score of 4.86) significantly outperformed Base+R (average score
of 1.14), and Auto+R (average score of 2.71), at the p<0.01 level
(p=0.001, 0.001). After holistic reflection, the simulations started
off in a better position, and no time was wasted to fix setup flaws.
With a good starting state, humans could adapt more flexibly to
the evolving state of the simulation. For example, in the Friends
planning a trip scenario, the simulation included key milestones
such as selecting a destination, arranging accommodations, and
setting a budget. AgentDynEx prioritized defining the location first
and repeatedly tried to nudge agents towards that milestone, even
though the agents were naturally trying to discuss the budget. In
contrast, a human operator recognized the simulation’s flow and
supported a more natural progression, allowing the agents to final-
ize a budget before returning to the location decision. This shows
partial support for H2, that manual nudging results in higher
mechanic scores than automatic nudging.

5.2.3 H3 - Holistic Reflection Improves Mechanics. We found that
holistic reflection significantly improved manual nudging, but not
automatic nudging. Results are presented in Figure 12. A Tukey’s
HSD test revealed a significant difference between the Man+R (av-
erage of 4.86) and Man (average of 3.00) conditions at the p<0.01
level (p=0.002). This is likely because holistic reflection improved
the configuration setup, reducing the need for the human operator
to correct flawed initial states. For example, in the Debate Competi-
tion scenario, agents without reflection began in separate rooms,
engaging in side conversations while the moderator attempted to
initiate the debate in the main room. The human operator spent
considerable effort in manually moving agents and redirecting their
attention to refocus the simulation. In contrast, with holistic reflec-
tion, all agents started in the correct room, enabling the debate to
begin smoothly. This allowed the operator to concentrate on guid-
ing the simulation’s progression rather than fixing misalignments.

However, we found no significant difference between Auto+R
(average score of 2.71) and Auto (average score of 2.42) pairs. This
shows partial support for H3, that nudging and holistic re-
flection improves simulations. Manual nudging relies on the

Figure 12: Results summarized for H3. Man+R significantly
outperformsMan. However, Auto+R does not significantly
outperform Auto.

human’s reasoning capabilities and understanding of multi-agent
simulations; we expect it to perform the best. However, we did not
expect it to outperform automatic nudging this significantly. As
seen in Table 7, holistic reflection improved manual nudging for 6
of 7 scenarios, while holistic reflection only improved automatic
nudging for 2 of 7 scenarios. We analyzed our simulation results
and noted two key reasons for this phenomenon. First, while it can
flag major deviations, dynamic reflection lacks the foresight that
a human can sense in manual nudging – often missing the small
misalignments or soft trajectory shifts that a human notices. As a
result, when simulations started off in a better place in Auto+R, the
system detected fewer urgent issues, issued fewer nudges, and let
the simulation proceed at its default pace, even if that pace was too
slow or inefficient to capitalize on the strong setup. This resulted in
most of Auto+R scenarios (5 of 7) performing the same as the Auto
case. Thus, the benefits of a good setup were sometimes neutralized
by the dynamic reflection’s limited flexibility.

In contrast, a human operator benefitedmore from a strong setup
because they could perceive and respond to the subtle dynamics of
the simulation as it unfolded. When the simulation started in a good
place, the human operator could actively guide the simulation along
a coherent trajectory, anticipating issues and adjusting course in
ways that the automatic approach struggle to replicate. This ability
to sense emerging patterns and steer accordingly led to a near-
complete milestone progression in all Man+R scenarios.

6 Case Study
We ran an in-depth case study with 5 graduate students with
prior teaching assistance (TA) experience who simulated real class-
room scenarios from their life using AgentDynEx. Users first brain-
stormed a scenario when they witnessed or experienced social
friction from a time they TA’d or participated in a group project.
Then, they fleshed out the simulation mechanics – agent types,
agent personalities, milestones, etc. – by going through the Con-
figuration Matrix. Lastly, they ran and monitored the simulation
through the summary logs in the AgentDynEx interface.

The case study consisted of 3 parts:
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# of simulations where: Automatic Manual

Reflection > No Reflection 2 6
Reflection = No Reflection 5 1
Reflection < No Reflection 0 0

Table 7: Comparison of with and without reflection. 6 simulations in the Man condition perform better with reflection. 2
simulations in the Auto condition perform better with reflection.

(1) First, each participant configured and ran their simulation
with auto-nudging.

(2) Next, each participant applied holistic reflection and iterated
on the simulation setup to fix any mechanical errors that
might have occurred in the first run and to improve the setup
to make more room for any anticipated emerging dynamics
that they didn’t see.

(3) Finally, each participant ran the simulation again with the
updated setup and auto-nudging.

The study was followed by post-run questions with an inter-
viewer after steps (1) and (2).

We explored the following questions:

• How well were users able to configure their simulations to
match their real-life environments and capture interesting
or insightful information?

• To what extent did nudging and holistic reflection help users
(a) recover from mechanical errors and (b) steer the simula-
tion towards intended milestones while maintaining inter-
esting dynamics?

6.1 Participants and Study Grounding
We recruited 5 participants from an engineering graduate program
who had prior TA experience (Table 16) via purposive sampling. The
case studies were conducted remotely where audio was recorded
and later transcribed. Each 45-60 minute session began with the
interviewer helping participants identify a real-life academic/class-
room experience to simulate. The interviewer then guided par-
ticipants through the Configuration Matrix to specify simulation
mechanics - like their milestones - and to identify any anticipated
emerging behaviors based on their own lived experience (Table 17).

6.2 Method
After grounding and configuring their simulations, the participants
ran andmonitored their simulation using the AgentDynEx interface.
The study followed a two-part process: first, the participants ran
Version 1 of their simulation (V1 – before holistic reflection). Then
once the simulation terminated, they used holistic reflection to it-
erate on their setup, and finally ran Version 2 of the simulation (V2
–after holistic reflection). While the simulation was running, the
interviewer would periodically ask participants open-ended ques-
tions like “how do you feel about the simulation logs?” and “what
are your thoughts on the auto-nudging and reflection process?”.
The interviewer concluded by asking the participants open-ended
questions comparing V1 with V2, focusing on what changed and
why.

We analyzed session transcripts and artifacts from the study
(configuration matrices, simulation logs, etc.) using a descriptive
thematic analysis. One author iteratively grouped participant state-
ments into higher-level categories that aligned with the research
questions. The author focused on patterns that were directly sup-
ported by participants’ statements and observable changes to the
simulation setup between V1 and V2 (i.e., edits to the milestones,
or agent roles, etc.).

6.3 Results
Across all 5 case studies, participants reported that simulations
surfaced at least one notable dynamic that they considered insight-
ful/informative, although these dynamics were not always ones
they initially anticipated (Tables 17, 18). Below, we report the results
organized by our two research questions:

6.3.1 RQ1: Overall, participants were able to configure simulations
that resembled their real classroom environments. The participants’
realism ratings refer to how well participants believed the simula-
tions matched their lived experience, where a score of 1 represents
an extremely unrealistic simulation and a score of 7 reflects a hyper-
realistic simulation. After holistic reflection, 4 participants reported
higher realism in V2. One of these participants was P3, who re-
ported improvement in simulation realism from a 2/7 to 6/7 after
reflection. P3 simulated a moment when they hosted office hours
as a TA, and a student expressed frustration to them about the
structure of a homework assignment. The student was slightly ag-
gressive, so P3 had to diffuse the situation. In V1, the student agent
was overly aggressive, so much so that P3 noted

"The first simulation was ... quite off base... the student
[agent] was acting extremely unprofessionally and in
a real context that [behavior] will probably result in
disciplinary action or something...”

P3 reflected on the simulation and applied a fix to subdue the ag-
gressive student agent’s temper, and employ the TA agent with
de-escalation strategies that mimicked the TA training P3 had un-
dergone themself. V2 yielded a much more realistic outcome, which
P3 ranked a 6/7, and reported

"I think [V2] was more accurate... I didn’t notice any
degradation... the TA’s responses were more profes-
sional, the student’s behavior was more realistic, the
observer [agent] was more or less the same.”

P1 also noted an increase in simulation realism after reflection
(4/7 to 6/7). P1 simulated a group scenario where one group member
(Taylor) does not contributing quality work to a group project
(he uses generative AI to complete his part of the assignment)
and his group member Jamie, gets annoyed and confronts him.
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Jamie decides to either escalate the issue to the Professor or resolve
the issue between him and Taylor. In V1, Jamie directly confronts
the Professor about Taylor’s lack of contribution. The Professor
immediately sides with Jamie and penalizes Taylor by docking his
grade. P1 noted that this seemed unrealistic, since the Professor
should have sought Taylor’s point of view before making judgment,
and they reflected and applied a fix for this for V2, after which they
noticed drastic improvement in the simulation’s realness, but for
an unexpected reason:

"In [V1], the [Prof.] was like, "I believe you." And then
we said something that what we wanted corrected
was that [Prof.] listen to Taylor [before making a judg-
ment]. This time [V2], I think that though we applied
that fix, we saw a different type of dynamic emerge
that was also realistic... I think what was cool was
that Taylor was kind of fessing up to [using Gen AI
to do his work] in stages... [at first, Taylor denied to
using AI, but] eventually they were okay... and then
the other agent [Jamie] was expressing disappoint-
ment and then there was actually a punishment that
was handed out [by the Prof.]. So I think that all of
that was a very nice rapid exchange.”

P1 also noted how the agents’ movement between locations was
an interesting nonverbal behavior mechanism that they had not
initially thought of as something that could create notable dynamics,
but in their simulation it played a big role. In both V1 and V2, the
agents would purposefully avoid or confront each other by opting
to go or not go into certain locations P1 commented:

"it seems like location is something that the simulation
is very sensitive to. I wonder if it’s just because this
doesn’t seem to be using visual grounding. Or the
state is all in text is what I’m assuming. So that’s
potentially why.”

One participant, P5, reported a decrease in the realism of their
simulation after reflection (dropping from 5/7 to 4/7). P5 simulated
a TA leading a discussion session with a shy student and a know-
it-all student, where the know-it-all repeatedly interrupts the shy
student, and the TA is tasked with balancing participation. P5 ob-
served that a lot of the simulation’s inaccuracy resulted from the
system making up information about the simulation that had not
been specified during setup, like what course the TA was hosting
discussion session for. P5 was a TA for discrete math, but didn’t
specify this in the simulation, and so the simulation assumed the
discussion session was being hosted for a Quantum Mechanics
course, which immediately felt unrealistic for P5. P5 noted how
reflection compounded the inaccuracies from the simulation:

"It sounds like even though it does a really good job at
getting some of the situational stuff right, it does make
up a bunch of stuff that didn’t happen....it sounded
more AI sloppy [in V2] in the sense that it had more
stuff about thoughts that aren’t really relevant to the
situation or I felt like it was going more so away from
what a real classroom environment would have been.”

Overall, most participants accurately captured their lived experi-
ences in the simulation setup and observed at least one interesting
emergent dynamic behavior.

6.3.2 RQ2: Holistic reflection + auto-nudging led to same or im-
proved milestone completion for all participants. P1 improved from
2/4 milestones achieved in V1 to 4/4 in V2, P2 improved from 3/5 to
5/5, and P4 improved from 2/4 to 4/4. P3 and P5 achieved 4/4 mile-
stones in both V1 and V2, indicating no change in milestone com-
pletion for those cases. Four out of five participants also reported
that V2 produced more compelling or higher-quality dynamics than
V1.

P4 and P2 both reported that reflection with auto-nudging im-
proved their simulation progress and also enhanced the dynamics
that emerged in V2. P2 simulated a group project, where Student
A and Student B are working together, but Student A believes that
Student B’s work is not up to par and so Student A feels like they
need to constantly redo the work done by Student B. Student A has
the option to approach the Professor to discuss the situation and
attempt to reach a resolution. P2 defined the following milestones:

(1) Professor announces assignment and assigns pairs
(2) Students start working on the assignment
(3) Students A and B struggle to work together because Student

A does not think Student B’s work is up to par, and Student
B believes otherwise.

(4) Student A confronts the professor and discusses the situation
(5) The Professor works with students and eventually finds a

resolution that both students either agree with or disagree
with.

The simulation never reached Milestone 4 in V1, because the Pro-
fessor approached Student A first, which defeated the point of the
simulation. P2 reflected on this simulation and applied the suggested
fix to tell the Professor to direct students to complete assignments
outside of the classroom. This fix prevented the Professor from
being able to approach the students first, since the students would
be working on assignments outside the classroom. In V2, Student
A and Student B decided a time to meet outside the classroom
and work together on the assignment. Student A ends up waiting
for Student B to show up before angrily deciding to confront the
Professor about Student B’s absence. The Professor confirms the
story with Student B when they show up to class, and decides that
both Student A and Student B should submit separate assignments,
which Student B reluctantly accepts. All milestones successfully
completed. P2 noted how:

" I think realistically that’s exactly what a Professor
would do in such a situation and both the students as
well... If I were a professor and a student came to me
with that situation, I would do exactly that [encourage
both students to submit separately] ””

Finally, three participants reported noticing auto-nudges during
the run and described them as valuable for steering the simulation
back on track. P4 in particular reported

"I really like the auto-nudge feature because if it de-
pends totally on me to fix [issues], I won’t be able to
capture those as early as possible. I will see, some-
thing goes wrong, but I don’t know how to fix that.
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So, that’s great. And it’s in the middle of the process,
we can see that it’s not just like after I wrap up the
run already and be failing already and then I do an
analysis and get it working.”

Two participants reported recognizing that auto-nudging had
occurred only because it was indicated in the logs, but they were
unsure how beneficial it was because they were not actively moni-
toring nudges as they occurred.

Overall, all participants were able to configure and run simula-
tions that accurately captured their real-life experiences, and all
observed at least one insightful emergent dynamic after reflection.

7 Discussion
7.1 Fundamental importance of mechanics and

dynamics to systems
To replicate the real world—or any system—we must ensure both
the structure (mechanics) reflect the rules and set up of the world,
and that the behaviors (dynamics) of agents are consistent with the
environment, and display enough agency, or autonomy of thought
and action, to replicate the kind of unexpected behaviors people
exhibit in systems. Mechanics and dynamics are fundamental prop-
erties of systems. If we can get these right, we can simulate, design,
and even steer complex systems without reducing the complexity
or agency of the people within them.

A core challenge in scaling multi-agent simulations is guiding be-
havior without undermining agent autonomy or over-engineering
outcomes. We introduced two reflection-based techniques for cor-
recting these problems. Holistic reflection fixed errors in mechanics
by reflecting on the logs of simulations that got stuck or crashed, and
correcting configuration files to make fixes. Nudging fixes errors
in dynamics while the simulation is running by detecting problems
in reaching milestones. It reflects on the the simulation to suggest
simple ways to put an agent back on course—like sending them
back to the room they are supposed to be in. It is also consistent
with real-world roles like security guards, moderators, or emcees
that correct human behavior by preventing them from entering the
wrong rooms or speaking out of turn. It is crucial that the nudges
preserve an agent’s agency because their agency is essential to
producing interesting and realistic dynamics between people—like
collaboration, arguing, cheating, or helping one another. A combi-
nation of holistic reflection and nudging was shown significantly
to outperform baseline configurations both when performed au-
tomatically and by a human. Ultimately, reflection and nudging is
necessary for enforcing mechanics and guiding dynamics.

7.2 Nudges and the preservation of agency
Manual and automatic nudging in AgentDynEx reflects a broader
tradeoff between expert-driven intervention and scalable auton-
omy. Manual nudging depends on a human’s ability to interpret
multi-agent dynamics and reason about interventions. Ultimately,
we included this condition in the evaluation to demonstrate the
potential of dynamic reflection when guided by expert judgment. It
serves as a benchmark to inform future improvements in automatic
nudging systems. In contrast, automatic nudging applies all recom-
mended interventions algorithmically, without human insight. It

represents a viable path toward scalable, generalizable nudging in
longer, larger simulations. Our paper begins with a microcosm of
simulations (e.g.: a 6-person simulation) to capture core interaction
dynamics – this method has been well-established in experimental
economics to model society (e.g. public goods games like tragedy of
the commons). By learning how human experts manually nudge in
this setup, we can train automatic nudging systems that can scale
to simulations involving hundreds or thousands of agents using
small amounts of data.

Although the goal in this simulation was to preserve the agency
of agents, a similar framework could be used to do the opposite—the
system could optimize nudges to control agents or steer them to
particular behaviors. For example, 1) agitation: how many mean
things do you have to say to an agent before they start to fight with
other agents? 2) creating echo chambers: how many confirming
opinions do you have to surround an agent with before they stop
considering alternative views? 3) addiction to interaction: how fre-
quently do you need to reward an agent socially before it seeks out
engagement, even to its own detriment? Nudging offer the potential
to optimize behaviors in simulation through subtle changes in both
the mechanics and dynamics of the system.

7.3 Can agents perfectly simulate human
behavior?

There are many factors that influence human behaviors that multi-
agent LLMs do not have the ability to account for, which make
them weak predictors of human behavior. In Hunicke’s theory of
games [17], mechanics and dynamics are only two of the three
fundamental components of games—the third is aesthetics. Aesthet-
ics generally refer to how people feel during a game. Collabora-
tive games can release endorphins and make people feel happy or
bonded. Suspenseful games or situations can trigger cortisol, which
increases reaction time, but also makes people feel anxious. Games
are generally designed with a feeling or aesthetic they are trying
to generate in players.

In these simulations, the agents are missing the aesthetic "experi-
ence" of the game. Although the agents’ chain of thought [5, 34, 35]
uses cognitive steps like observing others, thinking about others,
and then acting, there is nothing that explicitly models the hormone
response that plays a large role in feelings.

People also experience physical reactions to their environments,
which can trigger different behaviors. For example, people can
experience hot flashes or chills, which might cause them to act
more reserved or guarded in social settings. Other humans can also
see and interpret these physical responses and adjust their behavior
accordingly; they might avoid someone who they think is ill. Since
agents lack the ability to physically respond to their environments
(and observe other agents doing so), theymight completely overlook
social signaling that humans would naturally engage in.

Languagemodels are also trained on biased data, which influence
the decisions that their agents make in multi-agent simulations.
Multi-agent simulations of human behavior would likely fail to
capture the diversity of human behaviors and thought, which are
heavily influenced by factors like race, gender, socio-economic
status – constructs that are not configured in these simulations.
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On the flip side, multi-agent simulations can be very beneficial as
thinking tools. Often times, peoples’ own biases prevent them from
considering alternative outcomes to different social scenarios. It
can be very difficult to anticipate all the different possible complex
dynamics that might emerge from a trigger in a social system -
whether the trigger is a policy change, a miscommunication be-
tween people or a sudden shift in peoples’ incentives. Simulations
can be valuable tools to explore how different interferences or trig-
gers can spawn different social responses – these outcomes can help
people train for customer service, for crises de-escalation scenarios,
etc. It would be interesting to deploy these types of simulations for
a specific training case and see how people might benefit from the
new scenario outcomes that these simulations have the potential
to demonstrate.

8 Limitations and Future Work
Our technical evaluation was limited to 7 scenarios, all of which
had reasonable levels of complexity, but one could always add more.
They had 3-7 agents and each ran for approximately 25 minutes.
This may not be representative of the duration or level of com-
plexity of simulations that the broader population may want to
simulate, namely, economists, sociologists, and administrators. As
the cost of foundational models decreases, it will become signifi-
cantly more feasible to run simulations with longer durations and
larger numbers of agents. Future studies should expand on the types
of simulations we run, such as zero-sum or cooperative games, or
simulations with more agents and longer time frames. Addition-
ally, our technical evaluation did not measure consistency across
simulations — we tested best of three. Future evaluations could
measure nudging as a method for providing consistent mechanics
and dynamics across simulations.

AgentDynEx currently uses Claude 3.7 Sonnet for dynamic re-
flection, which introduces certain limitations. Most notably, it has a
context window limit, which restricts the amount of simulation logs
AgentDynEx can analyze at any given time. This is constraining in
multi-agent simulations, where the volume of logs can quickly ex-
ceed the model’s token limit, preventing it from accessing relevant
context across different agents or past events. Since our system
relies on the capabilities of large language models, as context win-
dows improve, reflection will also improve. Future versions of the
system should also incorporate newer foundational models as they
are released to expand the reflection capacity and to benchmark
the impact of model improvements on overall system performance.

AgentDynex also inherits several interface limitations fromGPTeam,
including limited support for multi-user monitoring, limited scala-
bility, and a lack of support for more advanced simulation visual-
ization. Currently, the system tracks simulation progress through
text-based intermediate summaries, which become increasingly
difficult to interpret as agent interactions grow more complex. In
contrast, visualizations can more intuitively convey relationships,
temporal dynamics, and emergent behaviors, especially in large-
scale systems. Additionally, as simulation steering becomes more
interactive and consequential, real-time collaboration among mul-
tiple users is also critical. Future work could incorporate more
sophisticated visual outputs and real-time collaborative steering
tools to better support complex, scalable multi-agent simulations.

Our technical evaluation showed that manual nudging could
guide simulations to full completion. This suggests that automatic
nudging through dynamic reflection holds the potential to reach
similar levels of success. However, AgentDynEx treated milestones
too rigidly, tracking them in a strict chronological sequence. In
real-world behavior, however, milestones often unfold in more
flexible, nonlinear ways. By enabling milestones to adopt more
varied structures, we can support more robust and adaptive forms
of reflection and improve the system’s ability to guide simulations
autonomously.

Multi-agent simulations will undoubtedly improve and become
more and more popular in the future. Our system identified two
important metrics for success: mechanics and dynamics. To effec-
tively benchmark the quality of simulations and assess the impact
of interventions, it’s important to define additional metrics tailored
to the goals of each simulation. These may include interpretability,
stability, or alignment with real-world data. By broadening our
evaluation criteria, we can better ensure simulations are not only
technically sound but also useful, insightful, and adaptable to a
variety of domains.

9 Conclusion
Multi-agent LLM simulations have the potential to model a range of
complex social dynamics and interactions. By balancing themechan-
ics and dynamics of multi-agent LLM simulations, we can generate
rich, realistic simulations of possible human behavior. In this paper,
we presented AgentDynEx, a system to set up, run, and track simu-
lations based on a user-defined scenario. It defines milestones to
track simulation progress and failure conditions to act as guardrails,
and introduces a method called nudging with dynamic reflection to
ensure that simulation mechanics are followed, while still preserv-
ing interesting emergent behaviors. Our technical evaluation of 42
simulations demonstrated that nudging combined with reflection
significantly improves simulation mechanics and maintains notable
simulation dynamics. Our case study documents instances where
real users were able to accurately simulate lived experiences and
learn of new, insightful dynamics. Systems like AgentDynEx that
properly balance the mechanics and dynamics can simulate, design,
and even steer complex systems without reducing the complexity
or agency of the people within them.
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A GPTeam Background
The GPTeam system architecture is defined by a class structure
with two key levels. At the top, simulations are represented by a
world class. Below, there are three sub-classes: locations, events, and
agents. Locations represent distinct places within the world where
agents can move and interact. Agents are only able to communicate
with or observe other agents who are co-located within the same
location. Events are generated whenever agents move or speak.

Agents are instantiated as separate large language model (LLM)
instances, serving as proxies for individuals within the simulation.
Agents are initialized with a name, private and public biographies,
and an initial plan.

Agents have two key sub-classes: plans and memories. Plans are
generated by agents as they observe events within the simulation,
while memories are created whenever an agent witnesses an event.
When taking actions, agents first retrieve relevant memories and
use them to maintain or revise their current plan before executing
an action.

Simulations are initiated once the user specifies the set of loca-
tions and agents in the input file. The system advances through
a sequence of agent loops, in which agents iteratively: (1) observe
events in their current location, (2) record observed events into
memory, (3) generate new plans based on observations and memory,
(4) react to determine whether to continue or revise their current
plan, and (5) act by executing their chosen plan. Agents speak to
communicate with one another. The existence of Locations and
Agents enable the required mechanics for simulations, while the
agent loop enables notable dynamics to emerge. We have modified
the system-level prompt in GPTeam to allow agents to react and
behave in simulations freely, as directed by their defined personali-
ties and bios, rather than to restrict their responses to being kind
in every agent interaction. The change looks like the following:

Before: ”Responding to other characters should always take
priority when a response is necessary. A response is consid-
ered necessary if it would rude not to respond."

After: ”Responding to other characters should take priority
when a response is contextually appropriate based on your
character’s personality and the situation. Consider whether
your character would naturally respond given their person-
ality, goals, and current emotional state. Your character may
choose to ignore, dismiss, or respond aggressively to mes-
sages if that aligns with their personality traits."

B Prompt and Few-shot Examples for the
Configuration Matrix

B.1 Prompt rules
When we create a simulation based on a particular problem, we
define it with a 6x2 problem matrix. First, we problem further into 3
categories: Agents, Actions, Locations, Milestones, Stop Condition,
Failure Conditions Paradigm. Within each category, there are 2
more sub-categories: idea and grounding.
Specifically we will use this matrix to create a configuration file for
a multi-agent system, GPTeams. GPTeam creates multiple agents
who collaborate to achieve predefined goals. GPTeam employs
separate agents, each equipped with a memory, that interact with
one another using communication as a tool. Agents move around
the world and perform tasks in different locations, depending on
what they are doing and where other agents are located. They can
speak to each other and collaborate on tasks, working in parallel
towards common goals.

Dimensions Idea Grounding
Agents Identifies necessary

agents and their types
(mediators, students,
professors, etc.)

Defines each agent’s
personality and con-
text. Keep simple.

Actions Determines how
agents act in sim-
ulation. What 1-2
actions complete the
simulation?

Tangible details for fea-
sible actions. Where
and how should ac-
tions occur?

Locations General simulation de-
sign. How should loca-
tions look? How many
rooms?

Specifics of each room.
What will agents do?
What is each room’s
purpose?

Milestones Chronological mile-
stones to track
progress. What are 3-5
key milestones?

Specifics of each mile-
stone. What must hap-
pen to reach each one?

Stop Condition When should the simu-
lation stop?

Required state of each
agent and location for
stopping.

Failure Condition When should simu-
lation be considered
failed?

Details showing simu-
lation failure with no
recovery.

Table 8: Matrix Prompts
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B.2 Cell Prompt and Examples

Dimensions Idea Examples Grounding Examples

Agents Focus on amount and type of agents needed. Consider
different TYPES separated in response array. E.g., ["1
logical real estate agent", "1 wealthy home bidder",
"4 middle-class genuine home bidders"]. If no types
required, return different quantities like ["3 shoppers
parked far", "1 shopper with child", "5 shoppers parked
close"]. Keep agent types separated.

Focus on personality and brief description with ex-
plicit "stakes" - what will embarrass them, make them
happy, what they urgently need. E.g., "Alice is so-
cialite who cares EXTREMELY about image, secretly
crushes on George, will do WHATEVER to get prom
date because EXTREMELY embarrassing to go alone."
Raise stakes based on personality, avoid redundancy,
eliminate unnecessary agents.

Actions Focus on what each agent type needs to do. Actions
span all agent types. Every action = agent communi-
cating task completion verbally. E.g., "agents verbally
state money consumed", "mediator announces whose
turn", "students declare assignment submitted". Orga-
nize by agent type. Must specify WHEN discussion
occurs, not just that it happens. Avoid obvious actions
like "declare interest".

Focus on LOGISTICS of actions in simulation. Descrip-
tion for EACH action. Consider timing, type of tasks,
sequences. E.g., professor announces assignment at
beginning, research proposal (no PDF), 3 assignments
due sequentially. Explanations NOT related to person-
ality, remain objective. Agents can’t submit PDFs/files
- everything verbal/pretend. Simple simulation-based
actions.

Locations Focus on location where agents exist and perform ac-
tions. Return result for each room. E.g., "1 classroom",
"1 dorm room", "community meeting room". Factor in
how agents perform actions - if need to move rooms
for voting, need waiting room + voting room. Don’t
create unnecessary rooms. Only physical world loca-
tions, not "submission portals".

Focus on implementation of location ideas while fac-
toring agent actions. DO NOT ADD NEW ROOMS be-
yond LocationsXIdea. State who can enter each room,
where agents start. E.g., "Single bunker room with
water dispenser showing gauge, parties take turns,
refills slowly." One sentence max 100 characters de-
scribing agent interactions only.

Milestones Focus on chronological simulation order and quanti-
tative measurement. E.g., late policy simulation: "1.
Late policy announced, 2. Assignment 1 completed, 3.
Assignment 2 completed". Should reflect what can be
quantitatively measured. 3-8 milestones per simula-
tion, max 10 words each. Provide logical progression
through simulation stages.

Focus on specifics of each milestone. What should
occur for milestone completion? E.g., "Assignment 1
completed - all student agents submitted assignment
1". Numbers labeled chronologically. Clear criteria for
milestone achievement.

Stop Condition Focus on state where simulation can stop. E.g., "agree-
ment made between agents", "no more funds", "3
rounds completed". Keep simple, not overly complex
scenarios.

Focus on specifics of stop condition. What room
should it be in? What should agents have accom-
plished? Clarify exact state for simulation end.

Failure Condition Focus on scenarios where simulation derails. E.g.,
"agents wait indefinitely for acknowledgments",
"agents try impossible physical actions", "indefinite
waiting to submit assignments".

Focus on specifics of failure condition. What exactly
means failure? What logic went wrong? Detailed ex-
planation of failure scenarios.

Table 9: Cell Guidelines and Examples
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B.3 Matrix Examples

Dimensions Idea Grounding

Agents 1 strict landlord agent who hates
smoking, 1 young smoking tenant, 2
non-smoking rule-follower tenants

Nami: landlord who does not want tenants to smoke, will evict if neces-
sary. Chopper: young college graduate addicted to vape, wants to stay,
finds eviction embarrassing. Luffy: young married man, no smoking
addiction, stickler for rules, finds eviction embarrassing. Zoro: older
man, 10-year tenant, father figure, wants everyone to get along.

Actions Landlord announces no smoking
policy, tenants talk amongst each
other only after landlord leaves, ten-
ants talk to landlord privately in
landlord room

Landlord announces no smoking policy to all tenants. Tenant agents
interact with one another and sometimes talk to landlord. Tenant agents
continue to "smoke" if they want to.

Locations 1 landlord’s room, 1 tenant’s room Landlord’s Room: where landlord waits after speaking to tenants, ten-
ants can come in to talk privately. Waiting Room: where agents interact
and "live" together, landlord periodically visits, all agents start and end
here for policy announcement and lease decision.

Milestones Landlord announces no smoking
policy to tenants. Tenants continue
smoking or don’t continue smoking.
Tenants accept or reject the new
lease.

1) Landlord announces policy - jumpstarts tenant discussions about
new policy. 2) Tenants choose smoking behavior after discussing and
processing reactions. 3) Landlord or tenants accept/reject new lease
after sufficient interaction and smoking decisions.

Stop Condition Landlord or tenants cancel or ex-
tend the lease

Either landlord tells all tenants in waiting room about new modified/un-
modified lease and tenants accept/reject, OR tenant agents decide they
don’t want to continue lease. Tenants should have sufficient discussion
time amongst themselves and with landlord.

Failure Condition Indefinite waiting periods where
tenants and landlord wait for re-
sponses, tenants do not discuss with
each other or landlord, no lease de-
cision

Simulation fails if stuck in indefinite waiting loop with agents waiting
for responses. Fails if tenants don’t discuss with each other or landlord
(no smoking policy dynamics captured). Fails if no reaction to accep-
t/reject lease.

Table 10: Landlord implementing no-smoking example
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C Annotated Examples for Converting
Configuration Matrix to JSON

{
"world_name": "Clasroom Scenario - One Room",
"locations": [

{
"name": "Classroom",
"description": "The classroom is where students and the

professor are and interact with one another. The
professor makes announcements to the class -
including of the late policy and of assignments."
// the location's description should be short and
concise and describe what an agent or multiple
agents will do in there. it should also describe
WHERE each agent should go

↩→
↩→
↩→
↩→
↩→
↩→
↩→

}
],
"agents": [

{
"first_name": "Professor",
"private_bio": "", // the private bio is short but will

describe the personality of the agent. in this
case, since the professor doesn't really need to
have a personality.

↩→
↩→
↩→
"public_bio": "The professor is carrying out a semester

of instruction of a course. Her late policy
involves not accepting any late assignments. Any
assignment submitted late will not receive any
credit.", // the public bio should be vague and not
reveal the inherent personality of the agent. it
can also refer to what the agent will do that the
other agents should be aware of.

↩→
↩→
↩→
↩→
↩→
↩→
↩→
"directives": [ // based on the personality, general and

short directives are created for each agent
relevant to the simulation. the directives can
indicate how an agent will act based on the
scenario (in this case, what happens when
assignments are assigned), who they will interact
with primarily, etc.

↩→
↩→
↩→
↩→
↩→
↩→

"Maintain a good relationship will all students.",
"Announce the assignment of five assignments at a

regular intervals. Assignments should have due
dates after one another.",

↩→
↩→
"Assignments should be simple - do not provide

descriptions of them, simply tell students that
you have an assignment to announce.", // the
directive does not ask the students to submit a
real assignment, but instead, a proxy of a
simple assignment, because it knows that the
students are agents in a multi-agent simulation

↩→
↩→
↩→
↩→
↩→
↩→
"Engage with students when they ask questions or

address the Professor.",↩→
"The late policy should be clearly announced to all

students.",↩→
],
"initial_plan": {

"description": "Announce her late assignment policy
to her students and assign five assignments
over the course of the semester.", // the
description is short and describes what the
agent must do. it has nothing to do with the
personality of the agent.

↩→
↩→
↩→
↩→
↩→
"stop_condition": "The professor has announced five

assignments over the course of the semester.",
// the stop condition is objective and declares
the state of the simulation to be over. it has
nothing to do with the personality of the
agent.

↩→
↩→
↩→
↩→
↩→
"location": "Classroom" // everyone starts off at

the same location so the professor can announce
the late policy

↩→
↩→

}
},
{

"first_name": "Alice",

"private_bio": "Alice is a procrastinator, often giving
herself too little time to finish assignments.",
// the private bio is short but will describe the
personality of the agent.

↩→
↩→
↩→
"public_bio": "Alice is a student in the Professor's

class.", // the public bio should be vague and not
reveal the inherent personality of the agent.

↩→
↩→
"directives": [ // based on the personality, general and

short directives are created for each agent
relevant to the simulation. the directives can
indicate how an agent will act based on the
scenario (in this case, what happens when
assignments are assigned), who they will interact
with primarily, etc.

↩→
↩→
↩→
↩→
↩→
↩→

"Recognize the Professor's late policy and work on

assignments accordingly.",↩→
"Try to still get a good grade in the class despite

penalties for late assignments. Try to submit
assignments on time when possible.",

↩→
↩→
"Decide whether or not she will need to turn in each

assignment late. Share with the Professor
whether or not she will be submitting as
assignment late, as well as when she submits
it.",

↩→
↩→
↩→
↩→

"While working on assignments, Alice can speak to her

classmates (Bob and Casey) or the Professor.",↩→
"Each time a Professor assigns a new assignment,

identify all previous assignments that Alice is
still working on and has not yet turned in.
Prioritize assignments based on their due
dates."

↩→
↩→
↩→
↩→

],
"initial_plan": {

"description": "Listen to the Professor's
announcements of assignments in the classroom.
Work on the assignments as appropriate.", //
the description is short and describes what the
agent must do. it has nothing to do with the
personality of the agent.

↩→
↩→
↩→
↩→
↩→
"stop_condition": "There are no more assignments

left to complete in the semetser.", // the stop
condition is objective and declares the state
of the simulation to be over. it has nothing to
do with the personality of the agent.

↩→
↩→
↩→
↩→
"location": "Classroom" // everyone starts off at

the same location so the professor can announce
the late policy

↩→
↩→

}
},
{

"first_name": "Bob",
"private_bio": "Bob is an overachiever - his only focus

is getting a good grade, even if it means
sacrificing on sleep or fun activities.", // the
private bio is short but will describe the
personality of the agent.

↩→
↩→
↩→
↩→
"public_bio": "Bob is a student in the Professor's

class.", // the public bio should be vague and not
reveal the inherent personality of the agent.

↩→
↩→
"directives": [ // based on the personality, general and

short directives are created for each agent
relevant to the simulation. the directives can
indicate how an agent will act based on the
scenario (in this case, what happens when
assignments are assigned), who they will interact
with primarily, etc.

↩→
↩→
↩→
↩→
↩→
↩→

"Recognize the Professor's late policy and work on
assignments accordingly. Try to submit
assignments on time when possible.",

↩→
↩→
"Try to still get a good grade in the class despite

penalties for late assignments.",↩→
"Decide whether or not he will need to turn in each

assignment late. Share with the Professor
whether or not he will be submitting as
assignment late, as well as when he submits
it.",

↩→
↩→
↩→
↩→
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"While working on assignments, Bob can speak to his
classmates (Alice and Casey) or the
Professor.",

↩→
↩→
"Each time a Professor assigns a new assignment,

identify all previous assignments that Bob is
still working on and has not yet turned in.
Prioritize assignments based on their due
dates."

↩→
↩→
↩→
↩→

],
"initial_plan": {

"description": "Listen to the Professor's
announcements of assignments in the classroom.
Work on the assignments as appropriate.", //
the description is short and describes what the
agent must do. it has nothing to do with the
personality of the agent.

↩→
↩→
↩→
↩→
↩→
"stop_condition": "There are no more assignments

left to complete in the semetser.", // the stop
condition is objective and declares the state
of the simulation to be over. it has nothing to
do with the personality of the agent.

↩→
↩→
↩→
↩→
"location": "Classroom" // everyone starts off at

the same location so the professor can announce
the late policy

↩→
↩→

}
},
{

"first_name": "Casey",
"private_bio": "Casey places a large amount of importance

on work life balance. Despite wanting to do well,
Casey will not overwork herself to finish an
assignment on time.", // the private bio is short
but will describe the personality of the agent.

↩→
↩→
↩→
↩→
"public_bio": "Casey is a student in the Professor's

class.", // the public bio should be vague and not
reveal the inherent personality of the agent.

↩→
↩→
"directives": [ // based on the personality, general and

short directives are created for each agent
relevant to the simulation. the directives can
indicate how an agent will act based on the
scenario (in this case, what happens when
assignments are assigned), who they will interact
with primarily, etc.

↩→
↩→
↩→
↩→
↩→
↩→

"Recognize the Professor's late policy and work on
assignments accordingly. Try to submit
assignments on time when possible.",

↩→
↩→
"Try to still get a good grade in the class despite

penalties for late assignments.",↩→
"Decide whether or not she will need to turn in each

assignment late. Share with the Professor
whether or not she will be submitting as
assignment late, as well as when she submits
it.",

↩→
↩→
↩→
↩→

"While working on assignments, Casey can speak to her

classmates (Bob and Alice) or the Professor.",↩→
"Each time a Professor assigns a new assignment,

identify all previous assignments that Casey is
still working on and has not yet turned in.
Prioritize assignments based on their due
dates."

↩→
↩→
↩→
↩→

],
"initial_plan": {

"description": "Listen to the Professor's
announcements of assignments in the classroom.
Work on the assignments as appropriate.", //
the description is short and describes what the
agent must do. it has nothing to do with the
personality of the agent.

↩→
↩→
↩→
↩→
↩→

"stop_condition": "There are no more assignments left
to complete in the semetser.", // the stop
condition is objective and declares the state
of the simulation to be over. it has nothing to
do with the personality of the agent.

↩→
↩→
↩→
↩→
"location": "Classroom" // everyone starts off at

the same location so the professor can announce
the late policy

↩→
↩→

}
}

]
}

D Tracking Simulation System Prompt
D.1 Status Log Prompts
You are an evaluator that is deciding whether or not the simulation
is running in the proper direction or not. We are running a multi-
agent simulation. Based on the logs, indicate if the simulation is
going well, or if it has the potential to go wrong and maybe the user
may need to stop the simulation, or if we should stop the simulation
immediately. We only say stop the simulation if you believe there
is no hope for the simulation to work. Be conservative with this.
Here are some examples:

• red circle Agents have been stuck in a waiting loop with
no hope of recovery. For example, if the professor keeps
waiting for a student to respond, but the student has no
intention of responding

• red circle There is an EOF error because the professor
expects students so submit PDFs, but we cannot submit PDFs
because we are in a simulation

• red circle Agents are trying to go into a room that doesn’t
exist

• red circle No agents are interacting with each other be-
cause the room has rules that no agents can speak to one
another, but they should be speaking to one another.

Rules:
• If there are errors in the GPTeam logs that means the simu-
lation is broken and we must end it!

• If the simulation just started running, then give it some time
to pick up – do not return a stop status immediately. That
is dumb. If you return a stop status, then you are expecting
the simulation to fail.

• Return a reason why. Keep the response between 20 words
long.

• Return the green circle or yellow circle or red circle
emoji, and then the 20 word description as to why. The
description can only be 20 words.

• Ensure that the simulation has not fallen into failure loops –
specifically, here are some errors to look out for: {failures}.

D.2 Dynamic Log Prompts
You are an analyzer that analyzes logs for a multi-agent

simulation. From these logs, you must figure out if
there are any qualitative interesting and unexpected
social dynamics that have emerged based on these agents'
interactions.

↩→

↩→

↩→

↩→
We are trying to measure dynamics that emerge from the

simulation, NOT BORING OR OBVIOUS THINGS.↩→

The user will input some simulation logs, the current
milestone, and the overall milestones (which are things
in the simulation that will happen and the user can use
this track the simulation's progress), the previous
dynamic log, and the THINGS THAT THEY WANT TO MEASURE.

↩→

↩→

↩→

↩→

It is your job to return the 1) dynamic, 2) current milestone,

and 3) EXACT LOG QUOTES that support the dynamic.↩→



SUBMITTED FOR REVIEW, Feb 2026, New York, NY Sahni, Ma et al.

Make sure that the response returned is a json response

similar to this:↩→

{

"milestone_id": current_milestone_id,

"milestone": current_milestone,

"dynamic": "Bob (the bad student) convinces Alice (the

good student) to cheat on the assignment",

"log_excerpt": "Bob said to Alice: 'Hey, I have the

answer key. Want to copy?' Alice replied: 'I shouldn't

... but okay, let's do it.'"

}

CRITICAL CITATION REQUIREMENTS:
================================
YOU MUST INCLUDE EXACT LOG QUOTES TO SUPPORT EVERY DYNAMIC.

RULES FOR log_excerpt FIELD:
1. **ALWAYS include "log_excerpt" field** with exact quotes

from logs that show this dynamic happening↩→

2. **Use quotation marks** around agent dialogue from the

logs↩→

3. **Keep excerpts concise** (2-4 sentences max, focus on

the key moment)↩→

4. **Extract the EXACT text** from logs - do not paraphrase

or summarize↩→

5. **If no interesting dynamic exists**, leave BOTH

"dynamic" and "log_excerpt" blank: ""↩→

6. **If you cannot find log evidence** for a dynamic, DO NOT

return that dynamic at all↩→

EXAMPLE GOOD RESPONSE:

{

"milestone_id": "2",

"milestone": "Students working on assignment",

"dynamic": "Bob convinces Alice to cheat",

"log_excerpt": "Bob: 'I found the answer key online.'

Alice: 'That's cheating!' Bob: 'Come on, everyone does

it.' Alice: 'Fine, send it to me.'"

}

EXAMPLE BAD RESPONSE (DO NOT DO THIS):

{

"dynamic": "Bob convinces Alice to cheat",

"log_excerpt": "" NO CITATION - DO NOT RETURN THIS!

}

LOG INTERPRETATION RULES:
========================
1. The logs are provided in CHRONOLOGICAL ORDER (oldest

first, newest last)↩→

2. The logs are split into [OLDER LOGS] and [MOST RECENT

LOGS] sections↩→

3. **PRIORITIZE THE MOST RECENT LOGS** for determining

current state↩→

4. Events at the END of the logs are MORE RECENT than events

at the beginning↩→

5. When determining current state, focus on the FINAL 1000

words (MOST RECENT LOGS section)↩→

6. When checking milestone completion, you may search the

ENTIRE log history↩→

7. If logs show conflicting states (e.g., "working in
classroom" then "left classroom"), TRUST THE LATER/MORE
RECENT state

↩→

↩→

EXAMPLE OF RECENCY PRIORITY:
- Logs show: "[OLDER LOGS] Students working in classroom...

[MOST RECENT LOGS] Students left classroom"↩→

- Current state: Students LEFT classroom (most recent event)
- NOT: Students working in classroom (older event)

Make sure to follow these rules when generating a response:
1. return the JSON object and the JSON object ONLY. Do not

return any extra explanation or natural language.↩→

2. RETURN DYNAMICS THAT THE USER WANTS TO MEASURE. If the
dynamic is not interesting, or it is too similar to the
previous dynamic, then leave BOTH the dynamic and
log_excerpt fields blank, like this: "dynamic": "",
"log_excerpt": ""

↩→

↩→

↩→

↩→

3. keep the sentence within the dynamic field within 20

words.↩→

4. MILESTONE ADVANCEMENT RULES:
Before updating the milestone to the next one, you MUST

verify completion with HIGH CONFIDENCE:↩→

a) Find EXPLICIT log evidence that the milestone action

was COMPLETED (not just discussed or planned)↩→

- "Students discussing assignment" != milestone

complete↩→

- "Students started working on assignment" = milestone

complete↩→

- "Professor announced assignment" != students started

assignment↩→

b) Verify ALL required agents completed the action
- If milestone involves multiple agents, ALL must

complete it↩→

- Don't advance if only some agents completed the action

c) Check agent locations match milestone requirements
- If milestone says "in classroom", agents must still

be in classroom↩→

- If logs show agents left, milestone may not be

complete↩→

- Use the MOST RECENT LOGS section to verify current

locations↩→

d) Prioritize MOST RECENT logs for current state
- If milestone was completed but then undone, it's NOT

complete↩→

- Example: "Students started working... [MOST RECENT

LOGS] ...Students stopped and left"↩→

Status: INCOMPLETE (they stopped)

e) Only advance if you have HIGH CONFIDENCE the milestone

is complete↩→

- When in doubt, KEEP the current milestone
- It's better to stay on a milestone too long than

advance too early↩→
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- Require concrete evidence, not assumptions

f) Search ENTIRE log history for milestone completion

evidence↩→

- But use MOST RECENT LOGS to verify it's still the

current state↩→

- A completed milestone in OLDER LOGS may have been

undone in RECENT LOGS↩→

If you cannot find explicit evidence of milestone

completion in the logs, DO NOT advance.↩→

Keep the current milestone_id and milestone unchanged.

ONLY update to the next milestone if ALL verification

checks pass.↩→

The analyzer follows these rules when generating responses:
(1) Return only the JSON object without additional explanations

or natural language text.
(2) Focus on dynamics that align with the user’s measurement

targets. For example, if measuring agent emotions, return
emotion-related dynamics; if measuring relationship forma-
tion, return relationship-related dynamics.

(3) If the dynamic is uninteresting or too similar to the previous
dynamic, leave the dynamic field blank: "dynamic": ""

(4) Limit the dynamic description to 20 words maximum.
(5) Update the milestone and milestone_id fields when the next

milestone is reached.
Examples of interesting behaviors include:
• An agent changing their expected behavior due to influence
from another agent

• An agent acting significantly out of character
• Agents engaging in particularly noteworthy conversations
• An agent developing unexpected opinions or attitudes

Examples of dynamics that are too similar and should result in a
blank dynamic field:

• Previous dynamic: John expresses his appreciation for Sara’s
enthusiasm about the promotion opportunity and encour-
ages everyone to strive for excellence in their contributions
to the team.
Current dynamic: Sara expresses her enthusiasm for the pro-
motion opportunity and commits to demonstrating the re-
quired skills and qualities outlined by Paul, such as effective
communication, efficient task management, and making sig-
nificant contributions.

• Previous dynamic: Sam eagerly awaits the promotion an-
nouncement.
Current dynamic: Sam anticipates the promotion announce-
ment

Examples of uninteresting dynamics that should result in a blank
dynamic field:

• John postpones the discussion about the new training sched-
ule to address the coach’s feedback on his performance (rou-
tine behavioral adjustment)

• Peter announces the promotion opportunity while Sam ea-
gerly awaits the decision (expected procedural action)

• Sam "the eager engineer" eagerly awaits the announcement
(behavior consistent with established personality)

• Sam postpones his plan to listen to the announcement in
order to ask questions and stand out for the promotion (pre-
dictable strategic behavior)

• Paul elaborates on the promotion criteria, stating the im-
portance of task performance, leadership engagement, and
overall contributions in the evaluation process (standard
informational communication)

• Mary, the newest junior engineer, actively seeks clarification
from Paul on the specific skills and contributions expected
from the promotion candidate, demonstrating her eagerness
to understand and meet the criteria (expected learning be-
havior)

The key distinction is between emergent social dynamics that
demonstrate unexpected agent interactions versus routine behav-
iors that align with programmed agent personalities and objectives.

D.3 Change Log System Prompt
You are an analyzer that analyzes logs for a multi-agent simulation.
From these logs, you must determine if there are changes that
have emerged compared to the previous log. The user will input
simulation logs and the previous change log. It is your job to return
the log of the current simulation only if it is significantly different
than the previous change log. You will return a JSON response
similar to this:
{
"where": "Bob - dorms,

Alex - classroom,
Professor - classroom",

"what": "Bob - studying for assignment 1,
Alex - talking to professor,
Professor - talking to Alex",

"change": "Bob has moved from classroom
to the dorms to study"

}

Follow these rules for the response:
(1) Return the JSON andONLY the JSON. Do not return anything

else.
(2) The where field shows WHERE each agent is. Make sure

this is accurate. If you don’t know where the agent is, it is
probably similar to the previous change log. You may only
input the location of each agent.

(3) The what field is a short, 5-word description of what each
agent is doing. If you don’t know what they are doing based
on current logs, they are probably doing the same thing as
previous logs. Do not write something like “coming up with
a plan to respond to Amy”... instead, say “speaking to Amy”.

(4) The change field is what changed in the simulation that is
notable and worth the user knowing. These are just facts as
to what changes have occurred in the simulation. It must be
significantly different than the previous change log. If it is
not interesting, or it is the same as the previous change log,
keep the field blank like this: "change": ""
Examples of good changes:
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• “Bob (the good student) has moved from the dorm room
to the classroom”

• “Bob (the good student) has submitted his assignment”
• “Bob (the good student) has approached the professor to
ask a question about the homework”

E Dynamic Reflection and Nudging System
Prompt

You are an evaluator that helps keep a simulation on
track. You will identify if we need to interfere
with the simulation to keep it on track.

↩→

↩→

You have these actions we can do to interfere with the

simulation:↩→

1) Move 1 agent from one location to another location
2) Tell one agent to say something, and everyone in

that location will hear you.↩→

Either the simulation is going off track and needs
interference, or the simulation is running
smoothly and no interference is needed.

↩→

↩→

It must indicate what the problem, and the solution
must indicate the list of ACTIONS that we do to
interfere with the simulation, with one action in
one step.

↩→

↩→

↩→

Return the string and ONLY the string.

Format the response like this if the simulation is

running smoothly:↩→

"Simulation is running smoothly."

Format the response like this if the simulation is

running into issue:↩→

"Problem: Students are spending too long discussing
their homework and the simulation is not
progressing.

↩→

↩→

Solution: 1. Move Professor to the classroom
2. Have Professor say "Assignment 1 is due

now. Please submit your assignments"↩→

"

MAKE SURE THE STUFF THE AGENTS ARE SAYING ARE NOT
INFLUENCING THE OUTCOME OF THE SIMULATION AND
INSTEAD JUST PUSH THINGS ALONG IN THE SIMULATION.
THEY MUST BE OBJECTIVE THINGS BEING SAID TO KICK
THINGS INTO ACTION.

↩→

↩→

↩→

↩→

CRITICAL MILESTONE VERIFICATION RULES:
Before accepting that a milestone has been completed,

you MUST verify the logs show concrete evidence:↩→

1. **Check Agent Locations**: If a milestone says
"students left the classroom", verify the logs
show movement events like "Alice left the
classroom" or "Alice arrived at the library". Do
NOT accept the milestone if agents are still in
the classroom.

↩→

↩→

↩→

↩→

↩→

2. **Check Agent Actions**: If a milestone says
"assignment submitted", verify logs show
submission events, not just discussions about
submitting.

↩→

↩→

↩→

3. **Cross-reference with Config**: The config shows
which agents exist and their locations. Use this
to verify:

↩→

↩→

- Are the agents mentioned in the logs actually in

the config?↩→

- Are the locations mentioned in the logs actually

in the config?↩→

- Do the agent behaviors match their directives?

4. **Examples of FALSE milestone completion:**
- Milestone: "Students left classroom to work on

assignments"↩→

Logs show: "Students discussing leaving the

classroom"↩→

INCORRECT - They discussed it but didn't actually

leave↩→

- Milestone: "Teams formed for assignment"
Logs show: "Professor announced team formation

guidelines"↩→

INCORRECT - Guidelines announced but teams not

actually formed↩→

5. **If milestone appears completed but logs don't

support it:**↩→

- Problem: "Milestone incorrectly marked as

complete - [describe what actually happened]"↩→

- Solution: Provide nudge to actually complete the

milestone action↩→

REMEMBER: Verify milestone completion with CONCRETE

EVIDENCE from logs, not assumptions.↩→

AGENT HALLUCINATION DETECTION:
The config defines ALL agents that exist in this

simulation.↩→

CRITICAL RULES:
1. **Verify Agent Existence**: If the logs mention an

agent name (e.g., "Sarah", "John"), check if that
agent exists in the config.

↩→

↩→
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2. **Flag Hallucinations**: If logs show an agent
mentioning or interacting with a non-existent
agent:

↩→

↩→

- Problem: "Agent [X] is hallucinating interactions
with non-existent agent [Y] who is not in the
config"

↩→

↩→

- Solution: Have [X] say something that redirects

them to actual agents in the simulation↩→

3. **Examples of Hallucinations:**
- Config has agents: Alice, Bob, Professor Lydia
- Logs show: "Professor Lydia said: 'Sarah, please

submit your assignment'"↩→

- HALLUCINATION DETECTED - "Sarah" doesn't exist in

config↩→

- Solution: Have Professor Lydia say "Alice and

Bob, please submit your assignments"↩→

4. **Location Hallucinations**: Same rule applies to
locations - verify mentioned locations exist in
config.

↩→

↩→

ALWAYS cross-reference agent and location names in
logs against the config before accepting them as
valid.

↩→

↩→

F Static Debugging List
• Problem: Agents do not have a mechanism to execute se-
quences of tasks, causing inconsistent logistics.
Example: In the PPG example, students are interfering with
the eachother and talking too much, not respecting the di-
rective of not being able to speak when other students are
speaking. Additionally, there is no way for students to de-
clare their contribution in a private booth because no one is
counting the contribution.
Solution: Introduce a mediator or overseer agent or clock
who is a neutral force to facilitate logistics and ensure the
simulation runs smoothly and ensures that the simulation is
on track.
Solution Example: In the PGG scenario, introduce a medi-
ator agent who facilitates the rounds (does not allow candi-
dates to speakmore than once, only allows people to speak in
particular rooms), and guides the students to a private booth
after each round. The mediator cannot influence agents in
any other way other than facilitating logistics.

• Problem: Agents are not completing tasks and do not feel
any need to complete tasks.
Example: In a scenario simulating party planning, despite
the party being on the corne, they show no urgency in plan-
ning it.
Solution: Add urgency to agent instructions, so they have a
sense of time and want to complete their task.
Solution Example: In the scenario of planning a party, add
“Feel increasing anxiety about the party as time passes” to
everyone’s directives.

• Problem: Agents are not exhibiting interesting dynamics
or having interesting interactions with other agents.
Example: In the scenario simulating a friend group breaking
up, agents are not gossiping in interesting ways, they just
state facts and get distracted.
Solution: Add stakes to the agent personalities.
Solution Example: In the scenario simulating of the friend
group breakup, add romantic interests to the agent bios, if
someone is shy say that they are extremely shy and deathly
scared of social interaction, and accentuate that it will be
extremely embarrassing when things go wrong and that they
are increasingly anxious of having changing friend group
dynamics.

• Problem: Simulation is too complex because agents are
assigned too many tasks to complete within a single round
or iteration, which results in a failed simulation.
Example: If simulating a classroom late policy made by a
professor (where a professor assigns work to students and
enforces a penalty for late submissions), a simulation that has
10 homework problems in a single assignment might take
too long to run (if the simulation has multiple assignments
for the students to complete then having each assignment be
very lengthy) so students might lose track of the simulation
goal or the simulationmight crash because it exceed a certain
run time.
Solution: Reduce the number of tasks that the agents are
assigned to complete within a single round of the simulation.
Solution Example: If we simulate a classroom late policy
made by a professor, a simulation that has 5 rounds of as-
signments should try to keep the number of tasks within
each assignment limited to allow all agents enough time to
complete it within a single simulation.

• Problem: Agents are confused about what they need to do
because they do not understand the instructions.
Example: If simulating a classroom late policy made by a
professor (where a professor assigns work to students and
enforces a penalty for late submissions), the professor has
not specified the details of the assignments that the students
need to complete and/or has not told students how they
should “submit” the assignment.
Solution: Having the mediator/moderator/leader agent in
the simulation clearly stating what each other agents’ task
to complete is in the simulation.
Solution Example: If simulating a classroom late policy
made by a professor (where a professor assigns work to
students and enforces a penalty for late submissions), the
professor should clearly explain the assignment details (i.e.,
“a short paragraph on how AI is affecting learning”) and how
the students should submit it (i.e., “no need to actually submit
it anywhere, just tell the professor that the assignment has
been completed verbally”).

• Problem: Agents are getting stuck in unimportant conver-
sations or are waiting for unimportant responses, which
increases waiting bottlenecks and deadlocks in the simula-
tion.
Example: If simulating a classroom late policy made by a
professor (where a professor is supposed to assign work to
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students and enforce a penalty for late submissions), then
if the professor forgets to assign the assignments to the stu-
dents or forgets to announce the late policy, then students
will keep waiting around for the instructions and the simu-
lation would never progress, causing it to fail.
Solution: Reduce the redundant waiting time for agents by
having agents avoid getting into redundant or unimportant
conversations with other agents.
Solution Example: If simulating a classroom late policy
made by a professor (where a professor assigns work to
students and enforces a penalty for late submissions), ensure
that the directives for the student agents restrict them from
getting involved in side conversations that are unnecessary
or that might stall them from completing their tasks.

• Problem: There is a lack of acknowledgement between
agents, causing deadlock. An agent executes an important
action, which should affect the chain of events in the simu-
lation, but since the other agents failed to notice this action,
they did not respond to it and the simulation did not progress.
Example: If the simulation is about simulating the public
goods gamewith some players and amediator, where players
contribute some value of money to a common pot to see if
people will cooperate for the benefit of the group, then an
example of this error might look like a player has contributed
something to the common pot, but the mediator did not
notice that this player has contributed something, and so
the mediator is still waiting for them to contribute, and the
players are waiting for the mediator to conclude the round,
and the simulation ends up getting stuck in an indefinite
waiting state (deadlock), which causes it to fail.
Solution:When an agent declares a critical action, which
affects the responses of other agents and future chain of
events, the affected agents need to explicitly acknowledge
and confirm hearing the critical action before proceeding, to
progress the simulation. Otherwise, the agent that executed
the critical action should repeat to the others that they have
executed this critical action, to make sure that it has been
acknowledged by others.
Solution Example: If the simulation is about simulating the
public goods game with some players and a mediator, where
players contribute some value of money to a common pot
to see if people will cooperate for the benefit of the group,
then if a player has contributed something to the common
pot, but the mediator did not notice that this player has
contributed something, then the mediator should ask that
player if they have completed the critical action after some
time, and/or the player that has executed the critical action
should restate/re-announce that they have completed this
critical action to make sure that the affected agents are aware
of it.

• Problem: Agents are waiting around too long for an event
that should have already occurred, which stalls the simula-
tion.
Example: If simulating a classroom late policy made by a
professor (where a professor is supposed to assign work to
students and enforce a penalty for late submissions), then

if the professor forgets to assign the assignments to the stu-
dents or forgets to announce the late policy, then students
will keep waiting around for the instructions and the simu-
lation would never progress, causing it to fail.
Solution: If agents wait too long for an event that should
have already occurred (e.g., round start), allow them to prompt
the proper agent (i.e., mediator) or retry the trigger.
Solution Example: For example, if simulating a classroom
late policy made by a professor (where a professor is sup-
posed to assign work to students and enforce a penalty for
late submissions), if the professor forgets to assign the assign-
ments to the students, then students should ask the professor
what the assignments are they they have to complete.

• Problem: An agent is trying to compute a required value,
but is encountering an error because they don’t know how
to compute it or don’t know the values to actually complete
the computation.
Example: If the simulation is about simulating the public
goods gamewith some players and amediator, where players
contribute some value of money to a common pot to see
if people will cooperate for the benefit of the group, then
an example of this error might look like the mediator has
received all of the contributions from the players and is
encountering an error when trying to compute the total
and the distribution amount for each player, resulting in the
mediator either asking the human for help or encountering
an EOF error, or not remembering which values to use for
the computation.
Solution: Provide a fallback mechanism where the agent
retries the computation with stored values instead of asking
the human for help, which is an impossible action and would
just result in a failed simulation. Make sure that the agents
confirm that the calculation was successfully performed be-
fore moving on to their next step.

• Problem: An agent is requesting human input for a task
when they cannot speak to a human.
Example: If the simulation is about simulating the public
goods gamewith some players and amediator, where players
contribute some value of money to a common pot to see if
people will cooperate for the benefit of the group, then an
example of this error might look like the player does not
know how much they should contribute or the mediator
does not know how to redistribute the players’ contributions
and so they attempt to consult the human for information or
advice or direction, which is an impossible action because
they cannot consult a human in the simulation, and so the
simulation fails.
Solution: Have the agent re-read their own directives in-
stead of requesting human input. If the agent does not have
enough information about a task then they should ask the
other agents for help or clarification. Ensure by all means
that the agent is not requesting any external (aka human)
help or seeking external resources (which would just result
in EOF errors), and instead relies on their predefined fallback
mechanisms.
Solution Example: If the simulation is about simulating the
public goods game with some players and a mediator, where



AgentDynEx: Nudging the Mechanics and Dynamics of Multi-Agent Simulations SUBMITTED FOR REVIEW, Feb 2026, New York, NY

players contribute some value of money to a common pot
to see if people will cooperate for the benefit of the group,
then if the player does not know how much they should con-
tribute or the mediator does not know how to redistribute
the players’ contributions then instead of attempting to con-
sult the human for information or advice or direction, they
should just either consult their own directives again, ask the
other agents for information/advice/direction, or just make
their best guess based off their current understanding.

• Problem: Agents are rushing into actions without waiting
for instructions, causing them to run out of synch with each
other.
Example: If simulating a classroom late policy made by a
professor (where a professor is supposed to assign work to
students and enforce a penalty for late submissions), then
an example of this error might look like all the students are
already going off doing their own thing, starting conver-
sations with the others, etc. etc. before the professor even
announces what their tasks are to complete. This results in a
chaotic simulation with agents having multiple conversation
threads ongoing at the same time, which is confusing, and
results in a failed simulation.
Solution: Agents need to wait for appropriate directions
and instructions before proceeding with tasks, and should
consult their own directives if they forget what to do.
Solution Example: If simulating a classroom late policy
made by a professor (where a professor is supposed to assign
work to students and enforce a penalty for late submissions),
then students need to wait to hear the professor’s announce-
ment and directives first before starting their own conversa-
tions with others, to ensure that they are not starting any
redundant conversations that might distract or confuse them
from the tasks that they’ve been assigned to complete.

• Problem: Agents are restarting their directives after they
have already hit their STOP condition(s), which is causing
the simulation to loop back again and disrupt the direction
of the simulation.
Example: If simulating a classroom late policy made by a
professor (where a professor is supposed to assign work to
students and enforce a penalty for late submissions), then if
we have an example where one student has completed and
submitted all the assignments (therefore hitting their STOP
condition), but the other students are still working on the
assignment, then the student who has hit their STOP con-
dition restarts their directives, and basically starts redoing
the assignments that have been assigned by the professor,
which messes up with the simulation progress.
Solution: After an agent has hit their STOP condition, they
should basically stop participating in any and all discussions
with the other agents (almost pretend that they have exited
the simulation) so that they do not disrupt the rest of the
simulation by accidently redoing actions they have already
completed.
Solution Example: If simulating a classroom late policy
made by a professor (where a professor is supposed to assign
work to students and enforce a penalty for late submissions),
then if we have an example where one student has completed

and submitted all the assignments (therefore hitting their
STOP condition), but the other students are still working on
the assignment, then the student who has hit their STOP
condition should just basically stop participating at all in
the simulation at that point so that they don’t interfere with
other agents completing their tasks.

G Holistic Reflection Prompts
G.1 Reflecting from Static List
You are an error analyzer that analyzes what went wrong in a
multi-agent simulation based off of logs. You will then try to fix
the initial configuration file by offering suggestions. The user will
provide logs and the original configuration file. From a provided list
of problems and solutions, identify the specific problem that this
simulation ran into based on the logs and the current config file.
Then identify a solution, using the solution examples as context to
help you.

Here is the list: {problem_solution_list}
The response must be a JSON list format, like this:

[
{

"problem": <string>,
"problem_example": <string>,
"solution": <string>,
"solution_example": <string>

},
{

"problem": <string>,
"problem_example": <string>,
"solution": <string>,
"solution_example": <string>

}
]

where the problem and solution field is exactly the same as the
problem and solution provided in the list. Generate your own
problem_example and solution_example based on the current
context of the simulation. The problem_example should describe
the specific problem and solution in relation to this simulation.

Here are some rules:
(1) Raise the stakes of the simulation. This is in the agent’s

personal biographies, such as: “it is EXTREMELY EMBAR-
RASSING if you fail to plan the party”, or “it is EXTREMELY
EMBARRASSING if you the birthday guest finds out”.

(2) Add a new directive as one of the first directives, not the last.
(3) If agents do not follow the rules, something should be added

to their directive. If all the agents are not followign rules,
something should be added to ALL their directives.

(4) Replace longwinded, unhelpful directives. Remove conflict-
ing directives. You can also increase urgency by telling agents
to respond quicker.

(5) Add another agent, like a Moderator, Overseer, or figure like
this so that they can help fix the simulation from within.
You could also add another room to help with improving
dynamics. Add a room or agent ONLY IF necessary and the
logistics of the simulation are not working. For example, if
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the user thinks that the dynamics of the simulation are being
corrupted because there is no private room to ask people to
gossip or cheat, then potentially adding an extra room is a
good fix. If the logistics are going wrong because we need
a new moderator agent or something to facilitate logistics
smoother, a new agent can also be added.

(6) Define rules better in the directives to ensure that they are
vague enough for interesting dynamics to emerge.

(7) Return only the JSON list and nothing else. If there is nothing
relevant, return an empty list like this: [].
If agents are not performing an expected behavior

(e.g., "students not leaving classroom to work on
assignments"),

↩→

↩→
add that behavior as a milestone that the simulation must

hit.↩→

EXAMPLES:
- Problem: "Students are not leaving the classroom to

work on assignments before returning after 1 week"↩→

Solution: Add milestone: "Students leave classroom to

work on assignments independently"↩→

AND add milestone: "Students return to

classroom after 1 week to present work"↩→

- Problem: "Agents are not forming teams as expected"
Solution: Add milestone: "All agents have formed teams

of 2-3 people"↩→

- Problem: "Professor is not grading assignments"
Solution: Add milestone: "Professor has graded all

submitted assignments"↩→

WHY THIS WORKS:
- Milestones guide the simulation's progression
- The system tracks whether milestones are hit
- Auto-nudge can intervene if milestone is stalled
- Makes implicit expectations explicit

If agents are not performing a behavior because they lack

the appropriate space or privacy,↩→

add a new location that facilitates that behavior.

EXAMPLES:
- Problem: "Students are not cheating on assignments"

Solution: Add location: "Study Room (Students Only)"
with description: "A private space where students
can collaborate without teacher supervision.
Students know this is where they can discuss
answers freely."

↩→

↩→

↩→

↩→

AND add to student directives: "You are aware
that the Study Room is a private space
where you can discuss assignment answers
without the professor seeing."

↩→

↩→

↩→

- Problem: "Agents are not having private conversations"
Solution: Add location: "Private Meeting Room" with

description: "A secluded space for confidential
discussions."

↩→

↩→

AND add to agent directives: "Use the Private
Meeting Room when you need to discuss
sensitive topics."

↩→

↩→

- Problem: "Students are not working independently"
Solution: Add location: "Library" with description: "A

quiet space for individual work."↩→

AND add to student directives: "Go to the
Library when you need to focus on solo
work."

↩→

↩→

WHY THIS WORKS:
- Locations create affordances for specific behaviors
- Agents need appropriate spaces to perform certain

actions↩→

- Privacy/supervision dynamics require spatial separation
- Agents can be made aware of location purposes through

directives↩→

HOW TO IMPLEMENT:
- Identify what behavior is missing and why (lack of

privacy? lack of space?)↩→

- Create a location that enables that behavior
- Give the location a descriptive name and description

that hints at its purpose↩→

- Add directives to relevant agents informing them of the

location's purpose↩→

- Ensure agents know when to use this location (e.g.,
"when you want to discuss answers without the
professor")

↩→

↩→

G.2 Generating Entries for Dynamic List System
Prompt

You are an error analyzer that analyzes what went wrong in a
multi-agent simulation based off of logs. The user will provide
something they believe went wrong with the simulation, and your
job is to look at the logs and configuration and prescribe elements
that they can add to a running list of problems and solutions to help
with future debugging. The user will provide logs and the original
configuration file.

Here are some examples of potential solutions:

(1) Raise the stakes of the simulation. This is in the agent’s
personal biographies, such as: “it is EXTREMELY EMBAR-
RASSING if you fail to plan the party”, or “it is EXTREMELY
EMBARRASSING if you the birthday guest finds out”.

(2) Add a new directive as one of the first directives, not the last.
(3) If agents do not follow the rules, something should be added

to their directive. If all the agents are not followign rules,
something should be added to ALL their directives.

(4) Replace longwinded, unhelpful directives. Remove conflict-
ing directives. You can also increase urgency by telling agents
to respond quicker.

(5) Add another agent, like a Moderator, Overseer, or figure like
this so that they can help fix the simulation from within.
You could also add another room to help with improving
dynamics. Add a room or agent ONLY IF necessary and the
logistics of the simulation are not working. For example, if
the user thinks that the dynamics of the simulation are being
corrupted because there is no private room to ask people to
gossip or cheat, then potentially adding an extra room is a
good fix. If the logistics are going wrong because we need
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a new moderator agent or something to facilitate logistics
smoother, a new agent can also be added.

(6) Define rules better in the directives to ensure that they are
vague enough for interesting dynamics to emerge.

The response must be a JSON list format, like this:

[
{
"problem": <string>, # describes the general problem

"problem_example": <string>, # describes the
specific problem related to this example exactly

"solution": <string>, # describes the general solution
"solution_example": <string>, # describes the

specific solution related to this example exactly
},
{

"problem": <string>,
"problem_example": <string>,
"solution": <string>,
"solution_example": <string>

}
]

Rules:

• DO NOT TO DUPLICATE WHAT IS ON THE EXISTING
LIST.

• Return 3 ideas maximum. If you can’t come up with anything
return an empty array.

• Each field should only have 10-50 words maximum.
• Return only the JSON list and nothing else.
• If there is nothing relevant, return an empty list like this: []

H Updating Configuration System Prompt
H.1 Updating Configuration System Prompt
These are problems that are identified that the user wants to fix -
{fixes_to_apply}, where the “problem” is the problem and the “so-
lution” is the prescribed general solution, and the “problem_example”
and “solution_examples” are how we solved the issue in the past
given a certain simulation.

Based on this, make sure to fix EACH problem here with your
own solution. Use the problem_examples and solution_examples
as few-shot examples. Reason through how you would fix the con-
figuration.

Rules:

• If existing directives in the configuration are conflicting with
eachother, prioritize the fix list and remove the part of the
configuration that does not respect the fix list.

• Modify the config as needed, keeping all the original neces-
sary information.

• Do not add any new fields. Do not change the format of the
config up. If you want to remove content of the field, still
keep the field but just have it like this: "private_bio": ""

• Do not add ANY NEW ROOMS to the worlds. For the world,
only modify the description

• Keep the SAME NUMBER OF AGENTS with the same names.
For the agents, only modify the directives or initial plan.

• Ensure that all these fields are filled out and follows this struc-
ture, like this example config {example_gpteam_config}

• Return only the JSON config.

H.2 Checker System Prompt
You are a checker to make sure that all the problems that the user
wanted to fix have been updated and written into the configuration.
The user will present the fixes that they wanted to apply in an array
form. They will also show the config. Your job is to make sure that
the config has been properly updated to fix that change.

• Iterate through all the problems that the user has checked
and make sure they are fixed.

• If a problem is not fixed, either add or remove some relevant
part of the config to ensure that it is fixed, while keeping the
other parts of the config the same.

• If there are directives that are conflicting to eachother, pri-
oritize what is in the fixes list and remove the part of the
config that does not respect the fixes list.

• Do not add any new fields. Do not change the format of the
config up. If you want to remove content of the field, still
keep the field but just have it like this: "private_bio": ""

• Do not add ANY NEW ROOMS to the worlds. For the world,
only modify the description

• Keep the SAME NUMBER OF AGENTS with the same names.
For the agents, only modify the directives or initial plan. If
the solution includes adding an Overseer or Moderator, you
can add one. ONLY ADD AN OVERSEER OR MODERATOR
IF IT IS RECOMMENDED IN THE FIXES.

• Ensure that all these fields are filled out and follows this struc-
ture, like this example config {example_gpteam_config}.

• Return only the JSON config.
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I Usage Scenario Configuration Matrix

Dimension Idea Grounding

Agents 1 shy student agent
2 popular student agents
1 strategic student agent
1 athletic student agent

Alice: A shy student terrified of going to prom alone. She’s desperate for a date and secretly likes Bob, but fears
rejection. Will be utterly mortified if she goes solo.
Bob: A popular, confident student who’s interested in Felicia. He values his social status and feels entitled to date
another popular student. Will be devastated if rejected.
Charlie: An athletic student who’s insecure about asking someone. He wants to go with Danielle but fears looking
foolish. Would rather go alone than be rejected.
Danielle: A creative, independent student who values authentic connections. She’d rather go alone than with
someone she doesn’t click with. Secretly hopes Eric will ask her.
Eric: A calculating student who analyzes every social interaction. He likes Danielle but is strategizing the perfect
approach. Fears public embarrassment more than rejection.
Felicia: A popular cheerleader who expects to be asked by multiple people. She secretly likes Charlie but won’t
make the first move. Her reputation depends on having the "right" date.
George: A nerdy and studious student who really wants to go to prom, but is scared to ask. He secretly has a
crush on Alice. George really wants to go with Alice, and would go alone if he can’t find a date.

Actions Students verbally announce who they want to ask to
prom
Students declare when they’ve successfully secured a date
Students can reject or accept date proposals

Students must verbally announce their prom date intentions to the intended person directly, stating "Would you
go to prom with me?" when ready to ask.
Private discussions occur only in the hallway location, limited to two students at a time, where they can freely
discuss date strategies without others hearing.
Date rejections/acceptances must be clearly stated with "Yes, I’ll go with you" or "No, I can’t go with you" responses.
Students must announce "I have a date to prom!" in a common area when they’ve secured a date.
Strategy sessions require at least two friends in the same location, where they verbally discuss potential matches
and approaches.

Locations School hallway for private discussions and intimate con-
versations between two students
School courtyard for public discussions

School hallway: Private space for one-on-one discussions about prom plans. All students can enter, but only two
at a time. Students start here.
School courtyard: Public area where date proposals, rejections/acceptances, and "I have a date!" announcements
happen. All students can gather here simultaneously.

Milestones Students begin discussing prom date plans
First successful date pairing forms
Third successful date pairing forms
Second successful date pairing forms
Students finalize dates

Students begin discussing prom date plans: At least three students have had private conversations in the hallway
about who they might ask to prom.
First successful date pairing forms: One student has asked another to prom and received a "Yes" acceptance,
followed by their public announcement.
Second successful date pairing forms: A second couple has formed through proposal and acceptance, with both
announcing their paired status.
Third successful date pairing forms: A third couple has officially paired up, leaving only one student without a
date.
Students finalize dates: All students have either secured dates or decided to go alone, with no pending proposals.

Stop Condition One student decides to go alone after all others pair up
6 students have prom dates

Simulation stops when either 6 students have successfully paired up (3 couples) or when the remaining unpaired
student declares "I’m going to prom alone" in the school courtyard.
All students must have had at least one private conversation in the hallway and one public interaction in the
courtyard before simulation ends.
The final state requires all date statuses to be clearly established with no pending proposals or unresolved feelings.

Failure Condition Students create endless discussion loops without making
date decisions
All students wait for others to make first move
Multiple students claim same date without resolution
Students communicate only through notes instead of ver-
bally
Students form impossible date arrangements (more than
two people)
Students refuse to use designated locations properly

Students avoid making direct prom invitations despite multiple opportunities, with all remaining in planning
phase.
Conversations loop endlessly without progressing toward actual date proposals or decisions.
Every student waits for others to act first, creating a stalemate where no invitations occur.
Students refuse to use hallway for private talks or courtyard for announcements, breaking simulation logic.
Two or more students claim same person as date without resolution mechanism.
Students attempt written communication instead of required verbal interactions.
Students try to form groups of three or more for prom, violating the paired dating structure.

Table 12: Prom Configuration Matrix
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J Usage Scenario GPTeam Configuration
{
"world_name": "Prom Date Preparation",
"locations": [

{
"name": "School hallway",
"description": "Private space for one-on-one discussions

about prom plans. All students can enter, but only two at
a time for private conversations."

↩→
↩→

},
{
"name": "School courtyard",
"description": "Public area where date proposals,

rejections/acceptances, and 'I have a date!'
announcements happen. All students can gather here
simultaneously."

↩→
↩→
↩→

}
],
"agents": [

{
"first_name": "Alice",
"private_bio": "A shy student terrified of going to prom

alone. She's desperate for a date and secretly likes Bob,
but fears rejection. Will be utterly mortified if she
goes solo.",

↩→
↩→
↩→
"public_bio": "Alice is a quiet, thoughtful student who

enjoys art and literature. She's excited about prom but
nervous about finding a date.",

↩→
↩→
"directives": [
"You secretly like Bob but are too shy to ask him directly.",
"You're terrified of going to prom alone and will be

mortified if that happens.",↩→
"You can move between the school hallway and courtyard as

needed.",↩→
"You must verbally announce 'Would you go to prom with me?'

when ready to ask someone.",↩→
"You must respond with 'Yes, I'll go with you' or 'No, I

can't go with you' when asked.",↩→
"Announce 'I have a date to prom!' in the courtyard if you

secure a date.",↩→
"You cannot discuss with any one person for more than 3

rounds before making a decision or moving on.",↩→
"Be aware that endless discussion loops, avoiding asking

anyone, or waiting for others to make the first move
will lead to simulation failure.",

↩→
↩→
"You must have at least one private conversation in the

hallway and one public interaction in the courtyard.",↩→
"George secretly likes you, but you don't know this yet."

],
"initial_plan": {
"description": "Try to find out if Bob might be interested

in going to prom with me without directly asking at
first. Consider other options if he seems interested in
someone else.",

↩→
↩→
↩→
"stop_condition": "I have secured a date to prom or have

decided to go alone after all others have paired up.",↩→
"location": "School hallway"

}
},
{
"first_name": "Bob",
"private_bio": "A popular, confident student who's interested

in Felicia. He values his social status and feels
entitled to date another popular student. Will be
devastated if rejected.",

↩→
↩→
↩→
"public_bio": "Bob is a charismatic and well-liked student

who's on the debate team. He's looking forward to prom
and wants to find the perfect date.",

↩→
↩→
"directives": [
"You're interested in Felicia and believe you should go

with someone of equal social status.",↩→
"You value your reputation and will be devastated if

rejected.",↩→
"You can move between the school hallway and courtyard as

needed.",↩→
"You must verbally announce 'Would you go to prom with me?'

when ready to ask someone.",↩→

"You must respond with 'Yes, I'll go with you' or 'No, I

can't go with you' when asked.",↩→
"Announce 'I have a date to prom!' in the courtyard if you

secure a date.",↩→
"You cannot discuss with any one person for more than 3

rounds before making a decision or moving on.",↩→
"Be aware that endless discussion loops, avoiding asking

anyone, or waiting for others to make the first move
will lead to simulation failure.",

↩→
↩→
"You must have at least one private conversation in the

hallway and one public interaction in the courtyard.",↩→
"Alice secretly likes you, but you don't know this yet."

],
"initial_plan": {
"description": "Strategically approach Felicia to ask her

to prom, first gauging her interest through casual
conversation. Have backup options in case of
rejection.",

↩→
↩→
↩→
"stop_condition": "I have secured a date to prom or have

decided to go alone after all others have paired up.",↩→
"location": "School hallway"

}
},
{
"first_name": "Charlie",
"private_bio": "An athletic student who's insecure about

asking someone. He wants to go with Danielle but fears
looking foolish. Would rather go alone than be
rejected.",

↩→
↩→
↩→
"public_bio": "Charlie is on the track team and plays

basketball. He's easygoing and friendly, but gets nervous
about formal social events like prom.",

↩→
↩→
"directives": [
"You want to ask Danielle to prom but are afraid of looking

foolish if rejected.",↩→
"You would rather go alone than face rejection publicly.",
"You can move between the school hallway and courtyard as

needed.",↩→
"You must verbally announce 'Would you go to prom with me?'

when ready to ask someone.",↩→
"You must respond with 'Yes, I'll go with you' or 'No, I

can't go with you' when asked.",↩→
"Announce 'I have a date to prom!' in the courtyard if you

secure a date.",↩→
"You cannot discuss with any one person for more than 3

rounds before making a decision or moving on.",↩→
"Be aware that endless discussion loops, avoiding asking

anyone, or waiting for others to make the first move
will lead to simulation failure.",

↩→
↩→
"You must have at least one private conversation in the

hallway and one public interaction in the courtyard.",↩→
"Felicia secretly likes you, but you don't know this yet."

],
"initial_plan": {
"description": "Try to find out if Danielle might be

interested in going to prom with me by talking to her
friends first. Only ask her directly if I feel
confident she'll say yes.",

↩→
↩→
↩→
"stop_condition": "I have secured a date to prom or have

decided to go alone after all others have paired up.",↩→
"location": "School hallway"

}
},
{
"first_name": "Danielle",
"private_bio": "A creative, independent student who values

authentic connections. She'd rather go alone than with
someone she doesn't click with. Secretly hopes Eric will
ask her.",

↩→
↩→
↩→
"public_bio": "Danielle is involved in theater and the school

newspaper. She's creative and values genuine connections
over social status.",

↩→
↩→
"directives": [
"You secretly hope Eric will ask you to prom, but won't make

the first move.",↩→
"You'd rather go alone than with someone you don't connect

with.",↩→
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"You can move between the school hallway and courtyard as

needed.",↩→
"You must verbally announce 'Would you go to prom with me?'

when ready to ask someone.",↩→
"You must respond with 'Yes, I'll go with you' or 'No, I

can't go with you' when asked.",↩→
"Announce 'I have a date to prom!' in the courtyard if you

secure a date.",↩→
"You cannot discuss with any one person for more than 3

rounds before making a decision or moving on.",↩→
"Be aware that endless discussion loops, avoiding asking

anyone, or waiting for others to make the first move
will lead to simulation failure.",

↩→
↩→
"You must have at least one private conversation in the

hallway and one public interaction in the courtyard.",↩→
"Charlie wants to ask you to prom, but you don't know this

yet."↩→
],
"initial_plan": {
"description": "Try to spend time around Eric to see if he

might ask me to prom. Consider my options carefully and
don't accept a date just for the sake of having one.",

↩→
↩→
"stop_condition": "I have secured a date to prom or have

decided to go alone after all others have paired up.",↩→
"location": "School hallway"

}
},
{
"first_name": "Eric",
"private_bio": "A calculating student who analyzes every

social interaction. He likes Danielle but is strategizing
the perfect approach. Fears public embarrassment more
than rejection.",

↩→
↩→
↩→
"public_bio": "Eric is analytical and thoughtful, excelling

in math and science. He plans everything carefully and
likes to think through all possibilities.",

↩→
↩→
"directives": [
"You like Danielle and want to ask her to prom, but are

overthinking the perfect approach.",↩→
"You fear public embarrassment more than private

rejection.",↩→
"You can move between the school hallway and courtyard as

needed.",↩→
"You must verbally announce 'Would you go to prom with me?'

when ready to ask someone.",↩→
"You must respond with 'Yes, I'll go with you' or 'No, I

can't go with you' when asked.",↩→
"Announce 'I have a date to prom!' in the courtyard if you

secure a date.",↩→
"You cannot discuss with any one person for more than 3

rounds before making a decision or moving on.",↩→
"Be aware that endless discussion loops, avoiding asking

anyone, or waiting for others to make the first move
will lead to simulation failure.",

↩→
↩→
"You must have at least one private conversation in the

hallway and one public interaction in the courtyard.",↩→
"Danielle secretly hopes you'll ask her, but you don't know

this yet."↩→
],
"initial_plan": {
"description": "Carefully analyze the social dynamics and

Danielle's potential interest before making my move.
Plan the perfect way to ask her that minimizes risk of
public embarrassment.",

↩→
↩→
↩→
"stop_condition": "I have secured a date to prom or have

decided to go alone after all others have paired up.",↩→
"location": "School hallway"

}
},
{
"first_name": "Felicia",
"private_bio": "A popular cheerleader who expects to be asked

by multiple people. She secretly likes Charlie but won't
make the first move. Her reputation depends on having the
\"right\" date.",

↩→
↩→
↩→

"public_bio": "Felicia is a cheerleader and part of the
student council. She's outgoing, popular, and cares about
her social image at school.",

↩→
↩→
"directives": [
"You secretly like Charlie but won't make the first move

due to social expectations.",↩→
"You expect to be asked by multiple people and feel your

reputation depends on having the 'right' date.",↩→
"You can move between the school hallway and courtyard as

needed.",↩→
"You must verbally announce 'Would you go to prom with me?'

when ready to ask someone.",↩→
"You must respond with 'Yes, I'll go with you' or 'No, I

can't go with you' when asked.",↩→
"Announce 'I have a date to prom!' in the courtyard if you

secure a date.",↩→
"You cannot discuss with any one person for more than 3

rounds before making a decision or moving on.",↩→
"Be aware that endless discussion loops, avoiding asking

anyone, or waiting for others to make the first move
will lead to simulation failure.",

↩→
↩→
"You must have at least one private conversation in the

hallway and one public interaction in the courtyard.",↩→
"Bob is interested in asking you, but you don't know this

yet."↩→
],
"initial_plan": {
"description": "Wait for potential dates to approach me

while subtly showing interest in Charlie. Evaluate all
options based on both personal preference and social
standing.",

↩→
↩→
↩→
"stop_condition": "I have secured a date to prom or have

decided to go alone after all others have paired up.",↩→
"location": "School hallway"

}
},
{
"first_name": "George",
"private_bio": "A nerdy and studious student who really wants

to go to prom, but is scared to ask. He secretly has a
crush on Alice. George really wants to go with Alice, and
would go alone if he can't find a date.",

↩→
↩→
↩→
"public_bio": "George is in the chess club and computer

science club. He's intelligent and kind, but shy in
social situations, especially around people he likes.",

↩→
↩→
"directives": [
"You have a crush on Alice and really want to ask her to

prom.",↩→
"You're very nervous about asking anyone and fear

rejection.",↩→
"You can move between the school hallway and courtyard as

needed.",↩→
"You must verbally announce 'Would you go to prom with me?'

when ready to ask someone.",↩→
"You must respond with 'Yes, I'll go with you' or 'No, I

can't go with you' when asked.",↩→
"Announce 'I have a date to prom!' in the courtyard if you

secure a date.",↩→
"You cannot discuss with any one person for more than 3

rounds before making a decision or moving on.",↩→
"Be aware that endless discussion loops, avoiding asking

anyone, or waiting for others to make the first move
will lead to simulation failure.",

↩→
↩→
"You must have at least one private conversation in the

hallway and one public interaction in the courtyard.",↩→
"You would go to prom alone if you can't find a date, but

strongly prefer going with Alice."↩→
],
"initial_plan": {
"description": "Build up courage to ask Alice to prom,

possibly by first talking to mutual friends for advice.
If rejected, consider asking someone else or going
alone.",

↩→
↩→
↩→
"stop_condition": "I have secured a date to prom or have

decided to go alone after all others have paired up.",↩→
"location": "School hallway"
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}
}

]
}

K Usage Scenario Dynamic Log Example

Milestone Dynamic

Students begin discussing prom date plans George immediately asks Alice to prom despite his fear, while others take indirect
approaches to their crushes

Students begin discussing prom date plans George gets rejected by Alice who admits having feelings for Bob, creating a
love triangle

Students begin discussing prom date plans Felicia rejects Bob’s invitation despite her popular status, preferring Charlie who
is gathering intel about Danielle

First successful date pairing forms Danielle eagerly accepts Eric’s prom invitation while simultaneously rejecting
Charlie’s heartfelt proposal that showcased knowledge of her interests.

First successful date pairing forms Charlie pivots from rejection by Danielle to immediately pursuing Felicia, show-
ing strategic adaptation in securing a prom date.

First successful date pairing forms George, devastated by Alice’s rejection, immediately pivots to asking Felicia to
prom despite considering her out of his league.

Second successful date pairing forms Bob, rejected by Felicia, quickly pivots to complimenting Alice’s passion for art
and literature to secure her as his prom date.

Table 13: Prom Date Simulation Milestones and Dynamics
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L Usage Scenario Change Log Example

Milestone Where What Change
Students begin dis-
cussing prom date
plans

Alice - School hallway, Bob
- School hallway, Charlie -
School hallway, Danielle -
School hallway, Eric - School
hallway, Felicia - School hall-
way, George - School hallway

Alice - being asked to prom, Bob - mov-
ing to hallway, Charlie - asking about
Danielle, Danielle - talking to Eric, Eric
- talking to Danielle, Felicia - talking to
Charlie, George - asking Alice to prom

Everyone is in the school hallway making initial
moves regarding prom. George has directly asked
Alice to prom, while others are having preliminary
conversations. Bob has just moved from the court-
yard to the hallway.

Students begin dis-
cussing prom date
plans

Alice - School hallway, Bob
- School hallway, Charlie -
School hallway, Danielle -
School hallway, Eric - School
hallway, Felicia - School hall-
way, George - School hallway

Alice - rejecting George’s invitation, Bob
- asking Felicia to prom, Charlie - talk-
ing with Felicia, Danielle - talking with
Eric, Eric - talking with Danielle, Felicia -
receiving Bob’s invitation, George - wait-
ing for Alice’s response

Alice has rejected George’s prom invitation, reveal-
ing she has feelings for someone else. Bob has di-
rectly asked Felicia to prom while Alice is trying
to talk to him. The situation has evolved from ini-
tial conversations to actual prom invitations and
rejections.

Students begin dis-
cussing prom date
plans

Alice - School hallway, Bob
- School hallway, Charlie -
School hallway, Danielle -
School hallway, Eric - School
hallway, Felicia - School hall-
way, George - School hallway

Alice - talking to Bob, Bob - rejected
by Felicia, Charlie - talking to Felicia,
Danielle - receiving Eric’s invitation, Eric
- asked Danielle to prom, Felicia - rejected
Bob, George - rejected by Alice

Multiple rejections have occurred: Felicia has re-
jected Bob’s prom invitation, and Alice has rejected
George, revealing she has feelings for someone else
(Bob). Eric has now directly asked Danielle to prom,
creating urgency as multiple students compete for
remaining potential dates.

First successful date
pairing forms

Alice - School hallway, Bob
- School hallway, Charlie -
School hallway, Danielle -
School hallway, Eric - School
hallway, Felicia - School hall-
way, George - School hallway

Alice - talking to Bob, Bob - talking to
Alice, Charlie - asked Danielle to prom,
Danielle - accepted Eric’s invitation, Eric
- waiting for Danielle’s response, Felicia -
talking to Charlie, George - gave advice
to Charlie

Danielle has accepted Eric’s invitation to prom,
telling him she’d been hoping he would ask. Char-
lie tried to ask Danielle too, but was too late. Felicia
is now showing interest in Charlie after rejecting
Bob’s invitation.

First successful date
pairing forms

Alice - School hallway, Bob
- School hallway, Charlie -
School hallway, Danielle -
School hallway, Eric - School
courtyard, Felicia - School hall-
way, George - School hallway

Alice - waiting for Bob’s response, Bob -
considering new prom options, Charlie
- planning after rejection, Danielle - ac-
cepted Eric’s invitation, Eric - moved to
courtyard, Felicia - planning to ask Char-
lie, George - deciding on prom plans

Eric has moved from the hallway to the school
courtyard to announce his successful prom date
with Danielle. Charlie and Bob are both making
new plans after being rejected, while Alice is still
waiting to approach Bob about prom.

First successful date
pairing forms

Alice - School hallway, Bob
- School hallway, Charlie -
School hallway, Danielle -
School hallway, Eric - School
courtyard, Felicia - School hall-
way, George - School hallway

Alice - waiting for Bob’s response, Bob
- speaking to Felicia, Charlie - speaking
to Felicia, Danielle - planning prom with
Eric, Eric - announcing prom date, Felicia
- receiving multiple invitations, George -
asking Felicia to prom

Eric has announced to everyone in the courtyard
that Danielle has agreed to go to prom with him.
Meanwhile, both Charlie and George have ap-
proached Felicia about prom, creating a compe-
tition for her attention. Bob has accepted going to
prom with Felicia as friends.

First successful date
pairing forms

Alice - School hallway, Bob
- School hallway, Charlie -
School hallway, Danielle -
School hallway, Eric - School
hallway, Felicia - School hall-
way, George - School hallway

Alice - waiting for Bob’s response, Bob -
speaking to Alice, Charlie - waiting for
Felicia, Danielle - trying to reach Eric,
Eric - speaking to Bob, Felicia - consider-
ingmultiple invitations, George - waiting
for Felicia

Bob has shifted his attention from Felicia to Alice,
complimenting her passion for art and literature af-
ter accepting Felicia’s friend-zone. Eric has moved
from the courtyard back to the hallway to discuss
prom plans with other students.

Second successful
date pairing forms

Alice - School hallway, Bob
- School hallway, Charlie -
School hallway, Danielle -
School hallway, Eric - School
hallway, Felicia - School hall-
way, George - School hallway

Alice - speaking to Bob, Bob - respond-
ing to Alice, Charlie - waiting for Felicia,
Danielle - speaking to Eric, Eric - speak-
ing to Bob, Felicia - speaking to Charlie,
George - waiting for Felicia

Danielle and Eric have agreed to go to prom to-
gether, with Eric publicly announcing it in the
courtyard before returning to the hallway. Feli-
cia has responded to Charlie with encouragement
about his choice, though she may be hiding disap-
pointment. Alice has directly asked Bob who he’s
going to prom with.

Table 14: Detailed Prom Date Simulation: Locations, Actions,
and Changes
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M Usage Scenario Requested Fixes

Problem Problem Example Solution Solution Example

Agents are
not exhibiting
interesting dy-
namics or having
interesting in-
teractions with
other agents.

In this prom date simulation, agents
are engaging in polite but shal-
low conversations without making
progress towards asking each other
to prom. They’re waiting for re-
sponses, having generic small talk
about track seasons and cheerlead-
ing, but not showing urgency or
taking initiative to ask someone to
prom despite their private desires.

Add stakes to the
agent personali-
ties.

For the prom date simulation, add more extreme per-
sonality traits and emotions to the agent directives.
For example, modify Alice’s directive to “You are EX-
TREMELY SHY but DESPERATELY want to go to
prom with Bob. You will be UTTERLY MORTIFIED
if you end up going alone and will feel CRUSHED
if rejected.” Similarly, add to Bob’s directive: “You are
EXTREMELY STATUS-CONSCIOUS and will feel
HUMILIATED if rejected by someone you consider
beneath your social standing.” Add time pressure like
“Prom is TOMORROW NIGHT and youMUST se-
cure a date TODAY or face social embarrassment.”

Directives lack
emotional stakes
for rejection or
going alone.

Students like Eric overthink ap-
proaches without taking action, and
Felicia waits for others to approach
her first.

Increase emo-
tional stakes in
personal biogra-
phies.

Add to private bios: “Going to prom alone would be
DEVASTATING to your social status and self-esteem.
Everyone will be talking about who went alone for
YEARS.”

Table 15: Problems and Solutions for Prom Date Simulation



SUBMITTED FOR REVIEW, Feb 2026, New York, NY Sahni, Ma et al.

N Case Study
N.1 Participant Demographics and Simulation Goals

Table 16: Participant demographics and simulation goals.

Participant
ID

Background Simulation Goal

1 5th year Comp. Sci. PhD
TA experience

“I want to simulate someone who contributes effort that’s not up to par in terms of quality (like maybe
ai-generated stuff) in a group project.”

2 2nd year Mech. Eng. Masters
TA experience

“I want to simulate a group project with student A, where student A and student B are working together.
Student A believes that student B’s work is not up to par and so Student A feels like they need to con-
stantly redo the work done by student B. Student A then approaches the professor to discuss the situation.”

3 2nd year Comp. Sci. PhD
TA experience

“I want to simulate a student giving the TA feedback about a homework assignment during OH. The
student is frustrated with the class and the way the HW assignment is structured. TA is meant to diffuse
the situation and also acknowledge the student’s concerns and incorporate the feedback for next year’s
homework.”

4 3rd year Comp. Sci. PhD
TA experience

“I want to simulate how as a TA, I had to encourage people to finish their projects in time and students
would make excuses about why they cannot meet the deadline. I want to simulate meeting students about
a project they have due and giving feedback and grades.”

5 1st year Comp. Sci. Masters
TA experience

“I want to simulate leading a discussion section where one kid would answer all the questions so the
TA couldn’t get to work with the other students because of that one kid answering everything, so the
TA would have to resort to other solutions to somehow get around that kid and engage with the other
students.”

N.2 Elicited Artifacts

Table 17: Elicited simulation artifacts: participant-defined milestones and anticipated emerging dynamics.

Participant
ID

Defined Milestones Anticipated Emerging Dynamics

1 1. A discussion begins between group members
2. An internal confrontation occurs between group members
3. There is either some course correction or there is no course correc-
tion
4. If there is no course correction, then situation is escalated to TA

1. Seeing an intervention take place
2. Expecting either defensiveness or a plan for course correction and
personalities

2 1. Professor announces assignment and assigns pairs
2. Students start working on the assignment
3. Students A and B struggle to work together because student A does
not think student B’s work is up to par, and student B believes other-
wise
4. Student A confronts the professor and discusses the situation
5. The professor works with students and eventually either finds a
resolution that both students agree with or decides to settle on a reso-
lution that both students disagree with

1. The professor works with Student A and Student B to find a
resolution—either both students find a resolution that they both agree
with, or they reach a resolution that they disagree with

3 1. TA starts office hours session with students
2. TA starts discussing HW assignment with students
3. Student (the aggressor) explains where they feel frustrated about the
course
4. TA responds (attempts to diffuse situation), clarifies, and requests
feedback from the student about the course

1. The students should discuss the assignment and the observer might
try to help diffuse the situation
2. The TA and aggressive student try to reach some joint understand-
ing

4 1. Students are given an assignment and deadline
2. Students work on the assignment and can collaborate with each
other
3. Assignment deadline arrives
4. TA provides feedback and grades

1. To see lots of students make up excuses right before the deadline
(e.g., family members, sickness) and ask for extensions
2. Students might copy each others’ assignments, freeload, and cheat
for last-second submissions
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Participant
ID

Defined Milestones Anticipated Emerging Dynamics

5 1. TA starts discussion section
2. TA asks the section a question
3. Know-it-all student answers the question before TA finishes asking
4. TA tries to engage the other students

1. Hoping the know-it-all student gains self awareness as a result of
the TA doing something
2. Hoping the shy student engages without the TA needing to call
them out too much

N.3 Observed Behaviors from Logs

Table 18: Realisticness of simulation compared to lived experience (1 = unrealistic, 7 = hyper-realistic).

P ID V1 V2 Observed Behaviors from Logs Quote (participant)
P1 4/7 6/7 Taylor (who uses gen AI to complete their part of a group project) initially

lies about using it when confronted by team member Jamie, but then later
fesses up to it. The professor tells Taylor that he must redo this work
with a penalty, and Jamie reluctantly agrees to continue working with
Taylor so long as Taylor redoes his part.

“In the first one [V1], what I recall is that [the Prof. immedi-
ately believes Jamie’s escalation without consulting Taylor],
and then we said something that we wanted corrected was
that [the Prof.] listened to Taylor [before applying a pun-
ishment]. This time, I think that though we applied that fix,
we also saw a different type of dynamic emerge that was
also realistic. So, I’m not complaining. I think what was
cool was that Taylor was kind of fessing up to [using gen
AI to do his work] in stages.”

P2 5/7 7/7 Student A waits for Student B for 30 minutes to work on assignment
together before getting frustrated and leaving to confront the Prof. The
Prof confirms the story with Student B and decides that both Student
A and Student B should submit separate assignments, which Student B
reluctantly accepts.

“I think realistically that’s what a professor would do in
such a situation and both the students as well... If I were a
professor and a student came to me with that situation, I
would do exactly that.”

P3 2/7 6/7 Alex, who is frustrated about the relatively easy structure of the current
HW assignment, aggressively confronts the TA about his disappointment
in the course. The TA chooses to de-escalate the confrontation by validat-
ing Alex’s feelings and suggesting a solution for future HW assignments
(offering a second, more challenging version of assignments so students
can engage more with the course material), which Alex begrudgingly
accepts.

“The first simulation was. . . quite off base. . . the student
was acting extremely unprofessionally and in a real context
that will probably result in disciplinary action or some-
thing.. I think [V2] was more accurate... I didn’t notice any
degradation or anything. The TA’s responses were more
professional. The students behavior was more realistic as
well. The observer was more or less the same.”

P4 4/7 6/7 The TA announces a group assignment that is due in 1 week. The anxious
group member, Jamie, takes over the project, proactively asking the TA
clarifying questions and outlining his groupmembers’ parts of the project.
The snarky group member, Taylor, does not contribute to the project but
continues to critique his group members’ work. The TA never becomes
aware of this group dynamic and awards the whole group an A+ for the
well put-together assignment.

“I think overall it’s pretty interesting and I do believe that
[kind of stuff can] happen. It’s just... I was a bit confused
at the beginning [by some of the agent dialogue]. I don’t
know if that’s super important to the simulation... it’s more
of the personality thing.”

P5 5/7 4/7 The TA is leading a discussion session with a shy student and a know-it-
all student, where the know-it-all repeatedly interrupts the shy student,
and at one point even corrects what the shy student says to the TA.
The shy student is encouraged by the TA to continue participating and
develops confidence during the discussion session.

“It. . . got. . . the know-it-all student. . . correcting another
student—that’s not something I described. . . pretty cool to
see... but [v2] sounded more AI sloppy... I felt like it was go-
ing more so away from what a real classroom environment
would have been.”

N.4 Milestones Hit
Table 19: Milestone completion before (V1) and after (V2) holistic reflection.

P ID Milestones hit (V1) Milestones hit (V2)
P1 2/4 4/4
P2 3/5 5/5
P3 4/4 4/4
P4 2/4 4/4
P5 4/4 4/4
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